Skip to main content
Log in

Gravitino dark matter and light gluino in an R-invariant low scale gauge mediation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the simplest class of the R-invariant gauge mediation model with the gravitino mass in the one to ten keV range. We show that the entropy production from the supersymmetry breaking sector makes the gravitino into a warm dark matter candidate. We also discuss that the gluino mass can be lighter than the wino mass even when the messenger sector satisfies the GUT relations at the GUT scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].

    ADS  Google Scholar 

  2. H.J. de Vega, P. Salucci and N.G. Sanchez, The mass of the dark matter particle from theory and observations, arXiv:1004.1908 [SPIRES].

  3. K. Markovic, S. Bridle, A. Slosar and J. Weller, Constraining warm dark matter with cosmic shear power spectra, JCAP 01 (2011) 022 [arXiv:1009.0218] [SPIRES].

    ADS  Google Scholar 

  4. F. Villaescusa-Navarro and N. Dalal, Cores and Cusps in W arm Dark Matter Halos, JCAP 03 (2011) 024 [arXiv:1010.3008] [SPIRES].

    ADS  Google Scholar 

  5. D. Boyanovsky, Warm dark matter at small scales: peculiar velocities and phase space density, arXiv:1011.2217 [SPIRES].

  6. A. Kamada and N. Yoshida, in preparation.

  7. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [SPIRES].

    ADS  Google Scholar 

  8. A.V. Maccio’ and F. Fontanot, How cold is Dark Matter? Constraints from Milky Way Satellites, arXiv:0910.2460 [SPIRES].

  9. M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, Nucl. Phys. B 189 (1981) 575 [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, Phys. Lett. B 110 (1982) 227 [SPIRES].

    ADS  Google Scholar 

  12. C.R. Nappi and B.A. Ovrut, Supersymmetric Extension of the SU(3) × SU(2) × U(1) Model, Phys. Lett. B 113 (1982) 175 [SPIRES].

    ADS  Google Scholar 

  13. L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-Energy Supersymmetry, Nucl. Phys. B 207 (1982) 96 [SPIRES].

    Article  ADS  Google Scholar 

  14. S. Dimopoulos and S. Raby, Geometric Hierarchy, Nucl. Phys. B 219 (1983) 479 [SPIRES].

    Article  ADS  Google Scholar 

  15. M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].

    ADS  Google Scholar 

  16. M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].

    ADS  Google Scholar 

  17. M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].

    ADS  Google Scholar 

  18. K.I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, Direct-transmission models of dynamical supersymmetry breaking, Phys. Rev. D 56 (1997) 2886 [hep-ph/9705228] [SPIRES].

    ADS  Google Scholar 

  19. Y. Nomura and K. Tobe, Phenomenological aspects of a direct-transmission model of dynamical supersymmetry breaking with the gravitino mass m(3/2) < 1 keV, Phys. Rev. D 58 (1998) 055002 [hep-ph/9708377] [SPIRES].

    ADS  Google Scholar 

  20. R. Sato and K. Yonekura, Low Scale Direct Gauge Mediation with Perturbatively Stable Vacuum, JHEP 03 (2010) 017 [arXiv:0912.2802] [SPIRES].

    Article  ADS  Google Scholar 

  21. S. Shirai, M. Yamazaki and K. Yonekura, Aspects of Non-minimal Gauge Mediation, JHEP 06 (2010) 056 [arXiv:1003.3155] [SPIRES].

    Article  ADS  Google Scholar 

  22. G.F. Giudice and R. Rattazzi, Extracting Supersymmetry-Breaking Effects from Wave-Function Renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino Search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Ibe, R. Sato, in preparation.

  25. M. Ibe, K. Tobe and T. Yanagida, A gauge-mediation model with a light gravitino of mass O(10) eV and the messenger dark matter, Phys. Lett. B 615 (2005) 120 [hep-ph/0503098] [SPIRES].

    ADS  Google Scholar 

  26. R. Sato and S. Shirai, LHC Reach of Low Scale Gauge Mediation with Perturbatively Stable Vacuum, Phys. Lett. B 692 (2010) 126 [arXiv:1005.1255] [SPIRES].

    ADS  Google Scholar 

  27. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [SPIRES].

    ADS  Google Scholar 

  28. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal Production of Gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [SPIRES].

    Article  ADS  Google Scholar 

  29. J. Pradler and F.D. Steffen, Thermal Gravitino Production and Collider Tests of Leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [SPIRES].

    ADS  Google Scholar 

  30. M. Fujii and T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge-mediated supersymmetry-breaking models, Phys. Lett. B 549 (2002) 273 [hep-ph/0208191] [SPIRES].

    ADS  Google Scholar 

  31. M. Fujii, M. Ibe and T. Yanagida, Thermal leptogenesis and gauge mediation, Phys. Rev. D 69 (2004) 015006 [hep-ph/0309064] [SPIRES].

    ADS  Google Scholar 

  32. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  33. W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [SPIRES].

    Article  ADS  Google Scholar 

  34. K.-I. Izawa and T. Yanagida, Dynamical Supersymmetry Breaking in Vector-like Gauge Theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [SPIRES].

    Article  ADS  Google Scholar 

  35. K.A. Intriligator and S.D. Thomas, Dynamical Supersymmetry Breaking on Quantum Moduli Spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Dine and J. Mason, Gauge mediation in metastable vacua, Phys. Rev. D 77 (2008) 016005 [hep-ph/0611312] [SPIRES].

    ADS  Google Scholar 

  37. M. Ibe, Y. Nakayama, H. Murayama and T.T. Yanagida, Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess, JHEP 04 (2009) 087 [arXiv:0902.2914] [SPIRES].

    Article  ADS  Google Scholar 

  38. N. Arkani-Hamed and H. Murayama, Renormalization group invariance of exact results in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 6638 [hep-th/9705189] [SPIRES].

    ADS  Google Scholar 

  39. T. Yanagida, A solution to the mu problem in gauge-mediated supersymmetry-breaking models, Phys. Lett. B 400 (1997) 109 [hep-ph/9701394] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Sato.

Additional information

ArXiv ePrint: 1012.5466

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibe, M., Sato, R., Yanagida, T.T. et al. Gravitino dark matter and light gluino in an R-invariant low scale gauge mediation. J. High Energ. Phys. 2011, 77 (2011). https://doi.org/10.1007/JHEP04(2011)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)077

Keywords

Navigation