Skip to main content
Log in

Flavor in minimal conformal technicolor

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a complete, realistic, and natural UV completion of minimal conformal technicolor that explains the origin of quark and lepton masses and mixing angles. As in “bosonic technicolor,” we embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The exchange of heavy scalar doublets generates higher-dimension interactions between technifermions and quarks and leptons that give rise to quark and lepton masses at the TeV scale. Obtaining a sufficiently large top quark mass requires strong dynamics at the supersymmetry breaking scale in both the top and technicolor sectors. This is natural if the theory above the supersymmetry breaking also has strong conformal dynamics. We present two models in which the strong top dynamics is realized in different ways. In both models, constraints from flavor-changing effects can be easily satisfied. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino. We argue that this light gaugino is a general consequence of conformal technicolor embedded into a supersymmetric theory. If the gaugino has mass below the TeV scale it will give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.A. Luty, Strong Conformal Dynamics at the LHC and on the Lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [SPIRES].

    Article  ADS  Google Scholar 

  3. J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal Conformal Technicolor and Precision Electroweak Tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [SPIRES].

    Google Scholar 

  4. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [SPIRES].

    ADS  Google Scholar 

  5. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  6. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [SPIRES].

  7. T. Akiba and T. Yanagida, Hierarchic Chiral Condensate, Phys. Lett. B 169 (1986) 432 [SPIRES].

    ADS  Google Scholar 

  8. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies and Chiral Perturbations in Technicolor, Phys. Rev. D 35 (1987) 774 [SPIRES].

    ADS  Google Scholar 

  9. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies from Slowly Running Couplings in Technicolor Theories, Phys. Rev. D 36 (1987) 568 [SPIRES].

    ADS  Google Scholar 

  10. D.B. Kaplan, J.W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Int. J. Mod. Phys. A 25 (2010) 422 [SPIRES].

    ADS  Google Scholar 

  11. Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Phase structure of lattice QCD for general number of flavors, Phys. Rev. D 69 (2004) 014507 [hep-lat/0309159] [SPIRES].

    ADS  Google Scholar 

  12. J. Braun and H. Gies, Running coupling at finite temperature and chiral symmetry restoration in QCD, Phys. Lett. B 645 (2007) 53 [hep-ph/0512085] [SPIRES].

    ADS  Google Scholar 

  13. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  14. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of the Conformal Window in QCD-like Theories, Phys. Rev. Lett. 100 (2008) 171607 [arXiv:0712.0609] [SPIRES].

    Article  ADS  Google Scholar 

  15. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].

    ADS  Google Scholar 

  16. A. Deuzeman, M.P. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, Phys. Rev. D 82 (2010) 074503 [arXiv:0904.4662] [SPIRES].

    ADS  Google Scholar 

  17. T. DeGrand, Y. Shamir and B. Svetitsky, Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 82 (2010) 054503 [arXiv:1006.0707] [SPIRES].

    ADS  Google Scholar 

  18. F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with six fundamental fermions, Phys. Lett. B 696 (2011) 374 [arXiv:1007.3067] [SPIRES].

    ADS  Google Scholar 

  19. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT , JHEP 12 (2008) 031 [arXiv:0807.0004] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [SPIRES].

    Article  ADS  Google Scholar 

  23. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [SPIRES].

    ADS  MATH  Google Scholar 

  24. E.H. Simmons, Phenomenology of a technicolor model with heavy scalar doublet, Nucl. Phys. B 312 (1989) 253 [SPIRES].

    Article  ADS  Google Scholar 

  25. C.D. Carone and H. Georgi, Technicolor with a massless scalar doublet, Phys. Rev. D 49 (1994) 1427 [hep-ph/9308205] [SPIRES].

    ADS  Google Scholar 

  26. E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [SPIRES].

    Article  ADS  Google Scholar 

  28. C.T. Hill, Topcolor: Top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].

    ADS  Google Scholar 

  29. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [SPIRES].

    ADS  Google Scholar 

  30. M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces, conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Braun and H. Gies, Running coupling at finite temperature and chiral symmetry restoration in QCD, Phys. Lett. B 645 (2007) 53 [hep-ph/0512085] [SPIRES].

    ADS  Google Scholar 

  33. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of the Conformal Window in QCD-like Theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum ibid. 102 (2009) 149902] [arXiv:0712.0609] [SPIRES].

    Article  ADS  Google Scholar 

  34. T. Appelquist, G.T. Fleming and E.T. Neil, Lattice Study of Conformal Behavior in SU(3) Yang-Mills Theories, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766] [SPIRES].

    ADS  Google Scholar 

  35. A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett. B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].

    ADS  Google Scholar 

  36. A. Deuzeman, M.P. Lombardo and E. Pallante, Evidence for a conformal phase in SU(N) gauge theories, Phys. Rev. D 82 (2010) 074503 [arXiv:0904.4662] [SPIRES].

    ADS  Google Scholar 

  37. A. Deuzeman, M.P. Lombardo and E. Pallante, Traces of a fixed point: Unravelling the phase diagram at large Nf, PoS(LAT2009)044 [arXiv:0911.2207] [SPIRES].

  38. Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Phase structure of lattice QCD for general number of flavors, Phys. Rev. D 69 (2004) 014507 [hep-lat/0309159] [SPIRES].

    ADS  Google Scholar 

  39. X.-Y. J in and R.D. Mawhinney, Lattice QCD with 8 and 12 degenerate quark flavors, PoS(LAT2009)049 [arXiv:0910.3216] [SPIRES].

  40. Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Chiral symmetry breaking in nearly conformal gauge theories, PoS(LAT2009)055 [arXiv:0911.2463] [SPIRES].

  41. T. Appelquist, A. Ratnaweera, J. Terning and L.C.R. Wijewardhana, The phase structure of an SU(N) gauge theory with N(f) flavors, Phys. Rev. D 58 (1998) 105017 [hep-ph/9806472] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. G.F. Giudice and A. Masiero, A Natural Solution to the μ-Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [SPIRES].

    ADS  Google Scholar 

  43. S. Weinberg, Does Gravitation Resolve the Ambiguity Among Supersymmetry Vacua?, Phys. Rev. Lett. 48 (1982) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  44. J. Bagger, E. Poppitz and L. Randall, The R axion from dynamical supersymmetry breaking, Nucl. Phys. B 426 (1994) 3 [hep-ph/9405345] [SPIRES].

    Article  ADS  Google Scholar 

  45. K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, arXiv:1002.0900 [SPIRES].

  47. A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [SPIRES].

    Article  ADS  Google Scholar 

  48. A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. S.J. Huber and Q. Shafi, Fermion Masses, Mixings and Proton Decay in a Randall-Sundrum Model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [SPIRES].

    ADS  Google Scholar 

  50. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [SPIRES].

    ADS  Google Scholar 

  51. J. Kang and M.A. Luty, Macroscopic Strings and ’Quirks’ at Colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].

    Article  ADS  Google Scholar 

  52. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  53. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  54. H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  55. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  56. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  57. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [SPIRES].

    Article  ADS  Google Scholar 

  58. MACRO collaboration, M. Ambrosio et al., Final search for lightly ionizing particles with the MACRO detector, hep-ex/0402006 [SPIRES].

  59. S. Dimopoulos, D. Eichler, R. Esmailzadeh and G.D. Starkman, Getting a charge out of dark matter, Phys. Rev. D 41 (1990) 2388 [SPIRES].

    ADS  Google Scholar 

  60. R.S. Chivukula, A.G. Cohen, S. Dimopoulos and T.P. Walker, Bounds On Halo Particle Interactions From Interstellar Calorimetry, Phys. Rev. Lett. 65 (1990) 957 [SPIRES].

    Article  ADS  Google Scholar 

  61. A. Gould, B.T. Draine, R.W. Romani and S. Nussinov, Neutron Stars: Graveyard Of Charged Dark Matter, Phys. Lett. B 238 (1990) 337 [SPIRES].

    ADS  MATH  Google Scholar 

  62. M.L. Perl, E.R. Lee and D. Loomba, Searches for fractionally charged particles, Ann. Rev. Nucl. Part. Sci. 59 (2009) 47 [SPIRES].

    Article  ADS  Google Scholar 

  63. S. Dimopoulos and L.J. Hall, Baryogenesis At The MeV Era, Phys. Lett. B 196 (1987) 135 [SPIRES].

    ADS  Google Scholar 

  64. S.D. Thomas, Baryons and dark matter from the late decay of a supersymmetric condensate, Phys. Lett. B 356 (1995) 256 [hep-ph/9506274] [SPIRES].

    ADS  Google Scholar 

  65. R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamison Galloway.

Additional information

ArXiv ePrint: 1012.4808

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.A., Galloway, J., Luty, M.A. et al. Flavor in minimal conformal technicolor. J. High Energ. Phys. 2011, 3 (2011). https://doi.org/10.1007/JHEP04(2011)003

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)003

Keywords

Navigation