Skip to main content
Log in

Merging multi-leg NLO matrix elements with parton showers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss extensions of multi-jet matrix element and parton shower merging approaches, to also include next-to-leading order accuracy. Specifically, we generalise the so-called CKKW-L prescription and the recently developed unitarised matrix element + parton shower (UMEPS) scheme. Endowing tree-level merging methods with NLO corrections greatly enhances the perturbative accuracy of parton shower Monte Carlo programs.

To generalise the CKKW-L approach, we augment the Nils-Lavesson-Leif-Lönnblad (NL3) scheme, which was previously developed for e+e-annihilation, with a careful treatment of parton densities. This makes the application of the NL3 method to hadronic collisions possible. NL3 is further updated to use for more readily accessible next-to-leading order input calculations.

We also extend the UMEPS scheme to NLO accuracy. The resulting approach, dubbed unitarised next-to-leading order + parton shower (UNLOPS) merging, does not inherit problematic unitarity-breaking features of CKKW-L, and thus allows for a theoretically more appealing definition of NLO order merging.

Both schemes have been implemented in PYTHIA8. We present results for the merging of W- and Higgs-production events, where the zero- and one-jet contribution are corrected to next-to-leading order simultaneously, and higher jet multiplicities are described by tree-level matrix elements. We find that NL3 and UNLOPS yield a very similar description for W production. For Higgs production however, UNLOPS produces more stable results.

The implementation of the NLO merging procedures is completely general and can be used for higher jet multiplicities and other processes, subject to the availability of programs able to correctly generate the corresponding partonic states to leading and next-to-leading order accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

    Article  Google Scholar 

  3. N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  Google Scholar 

  5. L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].

    Article  Google Scholar 

  6. L. Lönnblad and S. Prestel, Unitarising Matrix Element + Parton Shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].

    Article  Google Scholar 

  7. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R.K. Ellis, W. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  15. S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Platzer and S. Gieseke, Dipole Showers and Automated NLO Matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].

    ADS  Google Scholar 

  21. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    Article  Google Scholar 

  23. S. Höche, F. Krauss, M. Schönherr and F. Siegert, W+n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Gehrmann, S. Hoöche, F. Krauss, M. Schönherr and F. Siegert, NLO QCD matrix elements + parton showers in e + e hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, arXiv:1207.5030 [INSPIRE].

  28. R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].

    Article  ADS  Google Scholar 

  30. K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-Scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, arXiv:1211.5467 [INSPIRE].

  33. J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A New framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. II. A Phase space generator from a reweighted parton shower, JHEP 12 (2008) 011 [arXiv:0801.4028] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, arXiv:1211.7049 [INSPIRE].

  37. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].

    Article  ADS  Google Scholar 

  38. F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys. Lett. B 718 (2012) 100 [arXiv:1209.4595] [INSPIRE].

    ADS  Google Scholar 

  39. K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J.M. Campbell et al., NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  47. ATLAS collaboration, Study of jets produced in association with a W boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 092002 [arXiv:1201.1276] [INSPIRE].

    ADS  Google Scholar 

  48. T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.K. Ellis, W.J. Stirling and B. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1.

    Google Scholar 

  50. Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt{s}=63 \) GeV, Z. Phys. C 34 (1987) 163 [INSPIRE].

    ADS  Google Scholar 

  51. CDF collaboration, F. Abe et al., Measurement of double parton scattering in pp collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 79 (1997) 584 [INSPIRE].

    Article  ADS  Google Scholar 

  52. ATLAS collaboration, Measurement of underlying event characteristics using charged particles in pp collisions at \( \sqrt{s}=900 \) GeV and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001 [arXiv:1012.0791] [INSPIRE].

    ADS  Google Scholar 

  53. P. Bartalini et al., Multi-Parton Interactions at the LHC, arXiv:1111.0469 [INSPIRE].

  54. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Corke, Multiple Interactions in PYTHIA 8, arXiv:0901.2852 [INSPIRE].

  56. R. Corke and T. Sjöstrand, Multiparton Interactions and Rescattering, JHEP 01 (2010) 035 [arXiv:0911.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  57. R. Corke and T. Sjöstrand, Multiparton Interactions with an x-dependent Proton Size, JHEP 05 (2011) 009 [arXiv:1101.5953] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Prestel.

Additional information

ArXiv ePrint: 1211.7278

Work supported in parts by the Swedish research council (contracts 621-2009-4076 and 621-2010-3326).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lönnblad, L., Prestel, S. Merging multi-leg NLO matrix elements with parton showers. J. High Energ. Phys. 2013, 166 (2013). https://doi.org/10.1007/JHEP03(2013)166

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)166

Keywords

Navigation