Skip to main content
Log in

Entangled dilaton dyons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Einstein-Maxwell theory coupled to a dilaton is known to give rise to extremal solutions with hyperscaling violation. We study the behaviour of these solutions in the presence of a small magnetic field. We find that in a region of parameter space the magnetic field is relevant in the infra-red and completely changes the behaviour of the solution which now flows to an AdS 2 × R 2 attractor. As a result there is an extensive ground state entropy and the entanglement entropy of a sufficiently big region on the boundary grows like the volume. In particular, this happens for values of parameters at which the purely electric theory has an entanglement entropy growing with the area, A, like A log(A) which is believed to be a characteristic feature of a Fermi surface. Some other thermodynamic properties are also analysed and a more detailed characterisation of the entanglement entropy is also carried out in the presence of a magnetic field. Other regions of parameter space not described by the AdS 2 × R 2 end point are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  4. L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].

    ADS  Google Scholar 

  5. M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Swingle, Entanglement entropy and the Fermi surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Swingle, Conformal field theory on the Fermi surface, Phys. Rev. B 86 (2012) 035116 [arXiv:1002.4635] [INSPIRE].

    ADS  Google Scholar 

  9. Y. Zhang, T. Grover and A. Vishwanath, Entanglement entropy of critical spin liquids, Phys. Rev. Lett. 107 (2011) 067202 [arXiv:1102.0350] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  12. F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].

    ADS  Google Scholar 

  13. T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, arXiv:1207.4208 [INSPIRE].

  14. S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Neil, N. Ashcroft and D. Mermin, Solid state physics, Holt Rinehart & Winston, (1976).

  16. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  17. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  18. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  20. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].

    ADS  Google Scholar 

  23. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Meyer, B. Gouteraux and B.S. Kim, Strange metallic behaviour and the thermodynamics of charged dilatonic black holes, Fortsch. Phys. 59 (2011) 741 [arXiv:1102.4433] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. B. Gouteraux, B.S. Kim and R. Meyer, Charged dilatonic black holes and their transport properties, Fortsch. Phys. 59 (2011) 723 [arXiv:1102.4440] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  33. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].

    Article  MATH  Google Scholar 

  34. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].

  37. J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, JHEP 02 (2013) 147 [arXiv:1208.1752] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].

    ADS  Google Scholar 

  41. P. Nozieres, Theory of interacting Fermi systems, Westview Press, U.S.A. (1997).

    Google Scholar 

  42. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE].

  43. E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  44. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    ADS  Google Scholar 

  45. X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

    Article  ADS  Google Scholar 

  46. K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].

    ADS  Google Scholar 

  47. H. Singh, Lifshitz/Schrödinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].

    Article  ADS  Google Scholar 

  48. P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].

    Article  ADS  Google Scholar 

  49. P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, Phys. Rev. D 86 (2012) 066009 [arXiv:1204.4858] [INSPIRE].

    ADS  Google Scholar 

  50. E. Perlmutter, Hyperscaling violation from supergravity, JHEP 06 (2012) 165 [arXiv:1205.0242] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Kundu.

Additional information

ArXiv ePrint: 1208.2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, N., Narayan, P., Sircar, N. et al. Entangled dilaton dyons. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP03(2013)155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)155

Keywords

Navigation