Skip to main content
Log in

Light stringy states

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We carefully study the spectrum of open strings localized at the intersections of D6-branes and identify the lowest massive ‘twisted’ states and their vertex operators, paying particular attention to the signs of the intersection angles. We argue that the masses of the lightest states scale as \( M_{\theta }^2 \approx \theta M_s^2 \) and can thus be parametrically smaller than the string scale. Relying on previous analyses, we compute scattering amplitudes of massless ‘twisted’ open strings and study their factorization, confirming the presence of the light massive states as sub-dominant poles in one of the channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].

    Article  ADS  Google Scholar 

  2. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Bianchi, Recent trends in superstring phenomenology, arXiv:0909.1799 [INSPIRE].

  5. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Bianchi and M. Samsonyan, Notes on unoriented D-brane instantons, Int. J. Mod. Phys. A 24 (2009) 5737 [arXiv:0909.2173] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. M. Cvetič and J. Halverson, TASI lectures: particle physics from perturbative and non-perturbative effects in D-braneworlds, arXiv:1101.2907 [INSPIRE].

  8. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  9. I. Antoniadis, S. Dimopoulos and G. Dvali, Millimeter range forces in superstring theories with weak scale compactification, Nucl. Phys. B 516 (1998) 70 [hep-ph/9710204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  11. E. Dudas and J. Mourad, String theory predictions for future accelerators, Nucl. Phys. B 575 (2000) 3 [hep-th/9911019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Accomando, I. Antoniadis and K. Benakli, Looking for TeV scale strings and extra dimensions, Nucl. Phys. B 579 (2000) 3 [hep-ph/9912287] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Cullen, M. Perelstein and M.E. Peskin, TeV strings and collider probes of large extra dimensions, Phys. Rev. D 62 (2000) 055012 [hep-ph/0001166] [INSPIRE].

    ADS  Google Scholar 

  14. E. Kiritsis and P. Anastasopoulos, The anomalous magnetic moment of the muon in the D-brane realization of the standard model, JHEP 05 (2002) 054 [hep-ph/0201295] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. P. Burikham, T. Figy and T. Han, TeV-scale string resonances at hadron colliders, Phys. Rev. D 71 (2005) 016005 [Erratum ibid. D 71 (2005) 019905] [hep-ph/0411094] [INSPIRE].

    ADS  Google Scholar 

  16. D. Chialva, R. Iengo and J.G. Russo, Cross sections for production of closed superstrings at high energy colliders in brane world models, Phys. Rev. D 71 (2005) 106009 [hep-ph/0503125] [INSPIRE].

    ADS  Google Scholar 

  17. M. Bianchi and A.V. Santini, String predictions for near future colliders from one-loop scattering amplitudes around D-brane worlds, JHEP 12 (2006) 010 [hep-th/0607224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. L.A. Anchordoqui, H. Goldberg, S. Nawata and T.R. Taylor, Jet signals for low mass strings at the LHC, Phys. Rev. Lett. 100 (2008) 171603 [arXiv:0712.0386] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Anastasopoulos et al., Minimal anomalous U(1) extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [INSPIRE].

    ADS  Google Scholar 

  20. L.A. Anchordoqui, H. Goldberg, S. Nawata and T.R. Taylor, Direct photons as probes of low mass strings at the CERN LHC, Phys. Rev. D 78 (2008) 016005 [arXiv:0804.2013] [INSPIRE].

    ADS  Google Scholar 

  21. Z. Dong, T. Han, M.X. Huang and G. Shiu, Top quarks as a window to string resonances, JHEP 09 (2010) 048 [arXiv:1004.5441] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W.-Z. Feng, D. Lüst, O. Schlotterer, S. Stieberger and T.R. Taylor, Direct production of lightest Regge resonances, Nucl. Phys. B 843 (2011) 570 [arXiv:1007.5254] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L.A. Anchordoqui, W.-Z. Feng, H. Goldberg, X. Huang and T.R. Taylor, Searching for string resonances in e + e and γγ collisions, Phys. Rev. D 83 (2011) 106006 [arXiv:1012.3466] [INSPIRE].

    ADS  Google Scholar 

  24. W.-Z. Feng and T.R. Taylor, Higher level string resonances in four dimensions, Nucl. Phys. B 856 (2012) 247 [arXiv:1110.1087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Lüst, S. Stieberger and T.R. Taylor, The LHC string hunters companion, Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [INSPIRE].

    Article  ADS  Google Scholar 

  26. L.A. Anchordoqui et al., LHC phenomenology for string hunters, Nucl. Phys. B 821 (2009) 181 [arXiv:0904.3547] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Lüst, O. Schlotterer, S. Stieberger and T. Taylor, The LHC string hunters companion (II): five-particle amplitudes and universal properties, Nucl. Phys. B 828 (2010) 139 [arXiv:0908.0409] [INSPIRE].

    Article  ADS  Google Scholar 

  28. L.A. Anchordoqui, H. Goldberg, D. Lüst, S. Stieberger and T.R. Taylor, String phenomenology at the LHC, Mod. Phys. Lett. A 24 (2009) 2481 [arXiv:0909.2216] [INSPIRE].

    ADS  Google Scholar 

  29. M. Bertolini, M. Billó, A. Lerda, J.F. Morales and R. Russo, Brane world effective actions for D-branes with fluxes, Nucl. Phys. B 743 (2006) 1 [hep-th/0512067] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Cvetič and R. Richter, Proton decay via dimension-six operators in intersecting D6-brane models, Nucl. Phys. B 762 (2007) 112 [hep-th/0606001] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Cvetič, I. Garcia-Etxebarria and R. Richter, Branes and instantons intersecting at angles, JHEP 01 (2010) 005 [arXiv:0905.1694] [INSPIRE].

    ADS  Google Scholar 

  32. M. Bianchi, L. Lopez and R. Richter, On stable higher spin states in Heterotic String Theories, JHEP 03 (2011) 051 [arXiv:1010.1177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Arfaei and M. Sheikh Jabbari, Different D-brane interactions, Phys. Lett. B 394 (1997) 288 [hep-th/9608167] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. S. Abel and A. Owen, Interactions in intersecting brane models, Nucl. Phys. B 663 (2003) 197 [hep-th/0303124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. I. Antoniadis, E. Kiritsis and T.N. Tomaras, A D-brane alternative to unification, Phys. Lett. B 486 (2000) 186 [hep-ph/0004214] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Cvetič, J. Halverson and R. Richter, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Cvetič, J. Halverson, P. Langacker and R. Richter, The Weinberg operator and a lower string scale in orientifold compactifications, JHEP 10 (2010) 094 [arXiv:1001.3148] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Anastasopoulos, T. Dijkstra, E. Kiritsis and A. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Anastasopoulos, G. Leontaris, R. Richter and A. Schellekens, SU(5) D-brane realizations, Yukawa couplings and proton stability, JHEP 12 (2010) 011 [arXiv:1010.5188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

    Google Scholar 

  44. D. Cremades, L. Ibáñez and F. Marchesano, Towards a theory of quark masses, mixings and CP-violation, hep-ph/0212064 [INSPIRE].

  45. P. Anastasopoulos, M. Bianchi and R. Richter, On closed-string twist-field correlators and their open-string descendants, arXiv:1110.5359 [INSPIRE].

  46. J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

  47. L.A. Anchordoqui et al., Dijet signals for low mass strings at the LHC, Phys. Rev. Lett. 101 (2008) 241803 [arXiv:0808.0497] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D. Cremades, L. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Cvetič and I. Papadimitriou, Conformal field theory couplings for intersecting D-branes on orientifolds, Phys. Rev. D 68 (2003) 046001 [Erratum ibid. D 70 (2004) 029903] [hep-th/0303083] [INSPIRE].

    ADS  Google Scholar 

  50. D. Cremades, L. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].

    Article  ADS  Google Scholar 

  51. D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].

    Article  ADS  Google Scholar 

  52. N. Akerblom, R. Blumenhagen, D. Lüst and M. Schmidt-Sommerfeld, Thresholds for intersecting D-branes revisited, Phys. Lett. B 652 (2007) 53 [arXiv:0705.2150] [INSPIRE].

    ADS  Google Scholar 

  53. G. Honecker, Kähler metrics and gauge kinetic functions for intersecting D6-branes on toroidal orbifoldsThe complete perturbative story, arXiv:1109.3192 [INSPIRE].

  54. I. Pesando, The generating function of amplitudes with N twisted and M untwisted states, arXiv:1107.5525 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Richter.

Additional information

ArXiv ePrint: 1110.5424

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasopoulos, P., Bianchi, M. & Richter, R. Light stringy states. J. High Energ. Phys. 2012, 68 (2012). https://doi.org/10.1007/JHEP03(2012)068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)068

Keywords

Navigation