Skip to main content
Log in

Low temperature properties of holographic condensates

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS 4. At a non-zero temperature a small horizon would form deep inside this AdS 4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  3. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.S. Gubser, Colorful horizons with charge in Anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].

    Article  Google Scholar 

  7. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  8. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].

    ADS  Google Scholar 

  9. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in Anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [SPIRES].

    Article  ADS  Google Scholar 

  11. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped Holographic superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [SPIRES].

    ADS  Google Scholar 

  15. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].

    ADS  Google Scholar 

  16. C.P. Herzog and S.S. Pufu, The second sound of SU(2), JHEP 04 (2009) 126 [arXiv:0902.0409] [SPIRES].

    Article  ADS  Google Scholar 

  17. J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-dip-hump from holographic superconductivity, Phys. Rev. D 82 (2010) 026007 [arXiv:0911.2821] [SPIRES].

    ADS  Google Scholar 

  18. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].

    Article  ADS  Google Scholar 

  19. M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic operator mixing in holographic p-wave superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. S.S. Gubser, F.D. Rocha and A. Yarom, Fermion correlators in non-abelian holographic superconductors, JHEP 11 (2010) 085 [arXiv:1002.4416] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, arXiv:1011.5912 [SPIRES].

  23. M. Natsuume and M. Ohta, The shear viscosity of holographic superfluids, Prog. Theor. Phys. 124 (2010) 931 [arXiv:1008.4142] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  24. K. Peeters, J. Powell and M. Zamaklar, Exploring colourful holographic superconductors, JHEP 09 (2009) 101 [arXiv:0907.1508] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  26. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: holographic pion superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallab Basu.

Additional information

ArXiv ePrint: 1101.0215

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, P. Low temperature properties of holographic condensates. J. High Energ. Phys. 2011, 142 (2011). https://doi.org/10.1007/JHEP03(2011)142

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)142

Keywords

Navigation