Skip to main content
Log in

The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The existence of a minimum observable length and/or a maximum observable momentum is in agreement with various candidates of quantum gravity such as string theory, loop quantum gravity, doubly special relativity and black hole physics. In this scenario, the Heisenberg uncertainty principle is changed to the so-called Generalized (Gravitational) Uncertainty Principle (GUP) which results in modification of all Hamiltonians in quantum mechanics. In this paper, following a recently proposed GUP which is consistent with quantum gravity theories, we study the quantum mechanical systems in the presence of both a minimum length and a maximum momentum. The generalized Hamiltonian contains two additional terms which are proportional to αp 3 and α 2 p 4 where α ∼ 1/M Pl c is the GUP parameter. For the case of a quantum bouncer, we solve the generalized Schrödinger equation in the momentum space and find the modified energy eigenvalues and eigenfunctions up to the second-order in GUP parameter. The effects of the GUP on the transition rate of ultra cold neutrons in gravitational spectrometers are discussed finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [SPIRES].

    ADS  Google Scholar 

  2. M. Maggiore, A generalized uncertainty principle in quantum gravity, Phys. Lett. B 304 (1993) 65 [hep-th/9301067] [SPIRES].

    ADS  Google Scholar 

  3. M. Maggiore, Quantum groups, gravity and the generalized uncertainty principle, Phys. Rev. D 49 (1994) 5182 [hep-th/9305163] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. M. Maggiore, The algebraic structure of the generalized uncertainty principle, Phys. Lett. B 319 (1993) 83 [hep-th/9309034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. L.J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145 [gr-qc/9403008] [SPIRES].

    ADS  Google Scholar 

  6. F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment, Phys. Lett. B 452 (1999) 39 [hep-th/9904025] [SPIRES].

    ADS  Google Scholar 

  7. S. Hossenfelder et al., Collider signatures in the Planck regime, Phys. Lett. B 575 (2003) 85 [hep-th/0305262] [SPIRES].

    ADS  Google Scholar 

  8. C. Bambi and F.R. Urban, Natural extension of the generalised uncertainty principle, Class. Quant. Grav. 25 (2008) 095006 [arXiv:0709.1965] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Nozari, Some aspects of Planck scale quantum optics, Phys. Lett. B 629 (2005) 41 [hep-th/0508078] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. K. Nozari, T. Azizi, Some aspects of gravitational quantum mechanics, Gen. Rel. Grav. 38 (2006) 735.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. Pedram, A class of GUP solutions in deformed quantum mechanics, Int. J. Mod. Phys. D 19 (2010) 2003 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length uncertainty relation, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. A. Kempf, Nonpointlike particles in harmonic oscillators, J. Phys. A 30 (1997) 2093 [hep-th/9604045] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. F. Brau, Minimal length uncertainty relation and hydrogen atom, J. Phys. A 32 (1999) 7691 [quant-ph/9905033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. K. Nozari and B. Fazlpour, Some consequences of spacetime fuzziness, Chaos Soliton Fract. 34 (2007) 224.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Das and E.C. Vagenas, Universality of quantum gravity corrections, Phys. Rev. Lett. 101 (2008) 221301 [arXiv:0810.5333] [SPIRES].

    Article  ADS  Google Scholar 

  17. J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [SPIRES].

    Article  ADS  Google Scholar 

  18. J. Magueijo and L. Smolin, String theories with deformed energy momentum relations and a possible non-tachyonic bosonic string, Phys. Rev. D 71 (2005) 026010 [hep-th/0401087] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. J.L. Cortes and J. Gamboa, Quantum uncertainty in doubly special relativity, Phys. Rev. D 71 (2005) 065015 [hep-th/0405285] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. S. Das and E.C. Vagenas, Phenomenological implications of the generalized uncertainty principle, Can. J. Phys. 87 (2009) 233 [arXiv:0901.1768] [SPIRES].

    Article  ADS  Google Scholar 

  21. A.F. Ali, S. Das and E.C. Vagenas, Discreteness of space from the generalized uncertainty principle, Phys. Lett. B 678 (2009) 497 [arXiv:0906.5396] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S. Das, E.C. Vagenas and A.F. Ali, Discreteness of space from GUP II: relativistic wave equations, Phys. Lett. B 690 (2010) 407 [arXiv:1005.3368] [SPIRES].

    ADS  Google Scholar 

  23. P. Pedram, On the modification of Hamiltonians’ spectrum in gravitational quantum mechanics, Europhys. Lett. 89 (2010) 50008 [arXiv:1003.2769] [SPIRES].

    Article  ADS  Google Scholar 

  24. K. Nozari and P. Pedram, Minimal length and bouncing particle spectrum, Europhys. Lett. 92 (2010) 50013 [arXiv:1011.5673] [SPIRES].

    Article  ADS  Google Scholar 

  25. V.V. Nesvizhevsky et al., Quantum states of neutrons in the Earth’s gravitational field, Nature 415 (2002) 297 [SPIRES].

    Article  ADS  Google Scholar 

  26. V.V. Nesvizhevsky et al., Measurement of quantum states of neutrons in the Earth’s gravitational field, Phys. Rev. D 67 (2003) 102002 [hep-ph/0306198] [SPIRES].

    ADS  Google Scholar 

  27. V.V. Nesvizhevsky et al., Study of the neutron quantum states in the gravity field, Eur. Phys. J. C 40 (2005) 479 [hep-ph/0502081] [SPIRES].

    Article  ADS  Google Scholar 

  28. G. Pignol, K.V. Ptotasov and V.V. Nesvizhevsky, Spontaneous emission of graviton by a quantum bouncer, Class. Quant. Grav. 24 (2007) 2439 [quant-ph/0702256] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  29. R.B. Mann and M.B. Young, Perturbative quantum gravity coupled to particles in (1+1)-dimensions, Class. Quant. Grav. 24 (2007) 951 [gr-qc/0610116] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Pedram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedram, P., Nozari, K. & Taheri, S.H. The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field. J. High Energ. Phys. 2011, 93 (2011). https://doi.org/10.1007/JHEP03(2011)093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)093

Keywords

Navigation