Skip to main content
Log in

Reconstructing f(R) modified gravity from ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f(R) theory. We reconstruct the different f(R) modified gravity models in the spatially flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe. We also obtain the equation of state parameter of the corresponding f(R)-gravity models. We conclude that the holographic and new agegraphic f(R)-gravity models can behave like phantom or quintessence models. Whereas the equation of state parameter of the entropy-corrected models can transit from quintessence state to phantom regime as indicated by recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].

    ADS  Google Scholar 

  2. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].

    ADS  Google Scholar 

  3. Boomerang collaboration, P. de Bernardis et al., A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature 404 (2000) 955 [astro-ph/0004404] [SPIRES].

    Google Scholar 

  4. Supernova Cosmology Project collaboration, R.A. Knop et al., New constraints on Ω M , ΩΛ and w from an independent set of eleven high-redshift supernovae observed with HST, Astrophys. J. 598 (2003) 102 [astro-ph/0309368] [SPIRES].

    ADS  Google Scholar 

  5. T. Padmanabhan, Cosmological constant: the weight of the vacuum, Phys. Rept. 380 (2003) 235 [hep-th/0212290] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  6. P.J.E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75 (2003) 559 [astro-ph/0207347] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  7. E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. P. Hořava and D. Minic, Probable values of the cosmological constant in a holographic theory, Phys. Rev. Lett. 85 (2000) 1610 [hep-th/0001145] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. S.D. Thomas, Holography stabilizes the vacuum energy, Phys. Rev. Lett. 89 (2002) 081301 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].

  11. L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  12. W. Fischler and L. Susskind, Holography and cosmology, hep-th/9806039 [SPIRES].

  13. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Effective field theory, black holes and the cosmological constant, Phys. Rev. Lett. 82 (1999) 4971 [hep-th/9803132] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  14. M. Li, A model of holographic dark energy, Phys. Lett. B 603 (2004) 1 [hep-th/0403127] [SPIRES].

    ADS  Google Scholar 

  15. K. Enqvist and M.S. Sloth, A CMB/dark energy cosmic duality, Phys. Rev. Lett. 93 (2004) 221302 [hep-th/0406019] [SPIRES].

    ADS  Google Scholar 

  16. Q.-G. Huang and Y.-G. Gong, Supernova constraints on a holographic dark energy model, JCAP 08 (2004) 006 [astro-ph/0403590] [SPIRES].

    ADS  Google Scholar 

  17. Q.-G. Huang and M. Li, The holographic dark energy in a non-flat universe, JCAP 08 (2004) 013 [astro-ph/0404229] [SPIRES].

    ADS  Google Scholar 

  18. Y.-g. Gong, Extended holographic dark energy, Phys. Rev. D 70 (2004) 064029 [hep-th/0404030] [SPIRES].

    ADS  Google Scholar 

  19. E. Elizalde, S. Nojiri, S.D. Odintsov and P. Wang, Dark energy: vacuum fluctuations, the effective phantom phase and holography, Phys. Rev. D 71 (2005) 103504 [hep-th/0502082] [SPIRES].

    ADS  Google Scholar 

  20. X. Zhang and F.-Q. Wu, Constraints on holographic dark energy from type-IA supernova observations, Phys. Rev. D 72 (2005) 043524 [astro-ph/0506310] [SPIRES].

    ADS  Google Scholar 

  21. B. Guberina, R. Horvat and H. Stefancic, Hint for quintessence-like scalars from holographic dark energy, JCAP 05 (2005) 001 [astro-ph/0503495] [SPIRES].

    ADS  Google Scholar 

  22. J.-y. Shen, B. Wang, E. Abdalla and R.-K. Su, Constraints on the dark energy from the holographic connection to the small l CMB suppression, Phys. Lett. B 609 (2005) 200 [hep-th/0412227] [SPIRES].

    ADS  Google Scholar 

  23. B. Wang, E. Abdalla and R.-K. Su, Constraints on the dark energy from holography, Phys. Lett. B 611 (2005) 21 [hep-th/0404057] [SPIRES].

    ADS  Google Scholar 

  24. J.P. Beltran Almeida and J.G. Pereira, Holographic dark energy and the universe expansion acceleration, Phys. Lett. B 636 (2006) 75 [gr-qc/0602103] [SPIRES].

    ADS  Google Scholar 

  25. B. Guberina, R. Horvat and H. Nikolic, Dynamical dark energy with a constant vacuum energy density, Phys. Lett. B 636 (2006) 80 [astro-ph/0601598] [SPIRES].

    ADS  Google Scholar 

  26. H. Li, Z.-K. Guo and Y.-Z. Zhang, A tracker solution for a holographic dark energy model, Int. J. Mod. Phys. D 15 (2006) 869 [astro-ph/0602521] [SPIRES].

    ADS  Google Scholar 

  27. X. Zhang, Dynamical vacuum energy, holographic quintom and the reconstruction of scalar-field dark energy, Phys. Rev. D 74 (2006) 103505 [astro-ph/0609699] [SPIRES].

    ADS  Google Scholar 

  28. X. Zhang and F.-Q. Wu, Constraints on holographic dark energy from latest supernovae, galaxy clustering and cosmic microwave background anisotropy observations, Phys. Rev. D 76 (2007) 023502 [astro-ph/0701405] [SPIRES].

    ADS  Google Scholar 

  29. L. Xu, Holographic dark energy model with hubble horizon as an IR cut-off, JCAP 09 (2009) 016 [arXiv:0907.1709] [SPIRES].

    ADS  Google Scholar 

  30. M. Jamil, M.U. Farooq and M.A. Rashid, Generalized holographic dark energy model, Eur. Phys. J. C 61 (2009) 471 [arXiv:0901.2482] [SPIRES].

    ADS  Google Scholar 

  31. M. J amil and M.U. Farooq, Interacting holographic viscous dark energy model, Int. J. Theor. Phys. 49 (2010) 42 [SPIRES].

    MathSciNet  MATH  Google Scholar 

  32. A. Sheykhi, Thermodynamics of interacting holographic dark energy with apparent horizon as an IR cutoff, Class. Quant. Grav. 27 (2010) 025007 [arXiv:0910.0510] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. A. Sheykhi, Interacting agegraphic tachyon model of dark energy, Phys. Lett. B 682 (2010) 329 [SPIRES].

    ADS  Google Scholar 

  34. K. Karami, Comment on ’A holographic model of dark energy and the thermodynamics of a non-flat accelerated expanding universe’, by M.R. Setare and S. Shafei (JCAP 09 (2006) 011, arXiv:gr-qc/0606103), arXiv:1002.0431 [SPIRES].

  35. K. Karami, Comment on ’Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe’, by M.R. Setare (JCAP 01, 023, 2007), JCAP 01 (2010) 015 [arXiv:0911.4808] [SPIRES].

    ADS  Google Scholar 

  36. K. Karami and J. Fehri, New holographic scalar field models of dark energy in non-flat universe, Phys. Lett. B 684 (2010) 61 [arXiv:0912.1541] [SPIRES].

    ADS  Google Scholar 

  37. K. Karami and J. Fehri, Holographic dark energy in a non-flat universe with Granda-Oliveros cut-off, Int. J. Theor. Phys. 49 (2010) 1118 [arXiv:0911.4932] [SPIRES].

    MATH  Google Scholar 

  38. K. Karami and A. Abdolmaleki, Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe, Phys. Scr. 81 (2010) 055901.

    ADS  Google Scholar 

  39. R. Banerjee and B.R. Majhi, Quantum tunneling and back reaction, Phys. Lett. B 662 (2008) 62 [arXiv:0801.0200] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. R. Banerjee and B.R. Majhi, Quantum tunneling beyond semiclassical approximation, JHEP 06 (2008) 095 [arXiv:0805.2220] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. R. Banerjee and S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method, JHEP 05 (2009) 063 [arXiv:0903.3321] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. B.R. Majhi, Fermion tunneling beyond semiclassical approximation, Phys. Rev. D 79 (2009) 044005 [arXiv:0809.1508] [SPIRES].

    ADS  Google Scholar 

  43. S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach, Phys. Lett. B 671 (2009) 167 [arXiv:0807.0959] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. M. Jamil and M.U. Farooq, Interacting holographic dark energy with entropy corrections, JCAP 03 (2010) 001 [arXiv:1002.1434] [SPIRES].

    ADS  Google Scholar 

  45. H.M. Sadjadi and M. Jamil, Generalized second law of thermodynamics for FRW cosmology with logarithmic correction, Europhys. Lett. 92 (2010) 69001 [arXiv:1002.3588] [SPIRES].

    ADS  Google Scholar 

  46. S.-W. Wei, Y.-X. Liu, Y.-Q. Wang and H. Guo, Thermodynamic geometry of black hole in the deformed Hořava-Lifshitz gravity, arXiv:1002.1550 [SPIRES].

  47. D.A. Easson, P.H. Frampton and G.F. Smoot, Entropic inflation, arXiv:1003.1528 [SPIRES].

  48. H. Wei, Entropy-Corrected Holographic Dark Energy, Commun. Theor. Phys. 52 (2009) 743 [arXiv:0902.0129] [SPIRES].

    ADS  MATH  Google Scholar 

  49. R.-G. Cai, A dark energy model characterized by the age of the universe, Phys. Lett. B 657 (2007) 228 [arXiv:0707.4049] [SPIRES].

    ADS  Google Scholar 

  50. F. Karolyhazy, Gravitation and quantum mechanics of macroscopic objects, Nuovo Cim. A 42 (1966) 390.

    ADS  Google Scholar 

  51. F. Karolyhazy, A. Frenkel and B. Lukacs, On the possibility of observing the eventual breakdown of the superposition principle, in Physics as natural philosophy, A. Shimony and H. Feschbach eds., MIT Press, U.S.A. (1982).

    Google Scholar 

  52. F. Karolyhazy, A. Frenkel and B. Lukacs, On the possible role of gravity in the reduction of the wave function, in Quantum concepts in space and time, R. Penrose and C.J. Isham eds., Clarendon Press, Oxford U.K. (1986).

    Google Scholar 

  53. M. Maziashvili, Space-time in light of Karolyhazy uncertainty relation, Int. J. Mod. Phys. D 16 (2007) 1531 [gr-qc/0612110] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. M. Maziashvili, Cosmological implications of Karolyhazy uncertainty relation, Phys. Lett. B 652 (2007) 165 [arXiv:0705.0924] [SPIRES].

    ADS  Google Scholar 

  55. H. Wei and R.-G. Cai, A new model of agegraphic dark energy, Phys. Lett. B 660 (2008) 113 [arXiv:0708.0884] [SPIRES].

    ADS  Google Scholar 

  56. H. Wei and R.-G. Cai, Cosmological constraints on new agegraphic dark energy, Phys. Lett. B 663 (2008) 1 [arXiv:0708.1894] [SPIRES].

    ADS  Google Scholar 

  57. H. Wei and R.-G. Cai, Interacting agegraphic dark energy, Eur. Phys. J. C 59 (2009) 99 [arXiv:0707.4052] [SPIRES].

    ADS  Google Scholar 

  58. Y.-W. Kim, H.W. Lee, Y.S. Myung and M.-I. Park, New agegraphic dark energy model with generalized uncertainty principle, Mod. Phys. Lett. A 23 (2008) 3049 [arXiv:0803.0574] [SPIRES].

    ADS  Google Scholar 

  59. J.-P. Wu, D.-Z. Ma and Y. Ling, Quintessence reconstruction of the new agegraphic dark energy model, Phys. Lett. B 663 (2008) 152 [arXiv:0805.0546] [SPIRES].

    ADS  Google Scholar 

  60. X. Zhang, J. Zhang and H. Liu, Agegraphic dark energy as a quintessence, Eur. Phys. J. C 54 (2008) 303 [arXiv:0801.2809] [SPIRES].

    ADS  Google Scholar 

  61. I.P. Neupane, A note on agegraphic dark energy, Phys. Lett. B 673 (2009) 111 [arXiv:0708.2910] [SPIRES].

    ADS  Google Scholar 

  62. A. Sheykhi, Interacting new agegraphic dark energy in nonflat Brans-Dicke cosmology, Phys. Rev. D 81 (2010) 023525 [SPIRES].

    ADS  Google Scholar 

  63. K.Y. Kim, H.W. Lee and Y.S. Myung, Instability of agegraphic dark energy models, Phys. Lett. B 660 (2008) 118 [arXiv:0709.2743] [SPIRES].

    ADS  Google Scholar 

  64. A. Sheykhi, Interacting agegraphic dark energy models in a non-flat universe, Phys. Lett. B 680 (2009) 113 [arXiv:0907.5144] [SPIRES].

    ADS  Google Scholar 

  65. K. Karami, M.S. Khaledian, F. Felegary and Z. Azarmi, Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe, Phys. Lett. B 686 (2010) 216 [arXiv:0912.1536] [SPIRES].

    ADS  Google Scholar 

  66. K. Karami and A. Abdolmaleki, Reconstructing interacting new agegraphic polytropic gas model in non-flat FRW universe, Astrophys. Space Sci. 330 (2010) 133 [arXiv:1010.4294] [SPIRES]

    ADS  MATH  Google Scholar 

  67. K. Karami and A. Sorouri, Interacting entropy-corrected new agegraphic dark energy in the non-flat universe, Phys. Scr. 82 (2010) 025901.

    ADS  Google Scholar 

  68. K. Karami et al., Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology, Gen. Rel. Grav. 43 (2011) 27 [arXiv:1004.3607] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  69. M.U. Farooq, M. Jamil and M.A. Rashid, Interacting entropy-corrected new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe, Int. J. Theor. Phys. 49 (2010) 2278 [arXiv:1003.4098] [SPIRES].

    MATH  Google Scholar 

  70. M. Malekjani and A. Khodam-Mohammadi, Interacting entropy-corrected agegraphic Chaplygin gas model of dark energy, arXiv:1004.1017 [SPIRES].

  71. S. Capozziello, Curvature quintessence, Int. J. Mod. Phys. D 11 (2002) 483 [gr-qc/0201033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  72. S. Nojiri and S.D. Odintsov, Modified f(R) gravity consistent with realistic cosmology: from matter dominated epoch to dark energy universe, Phys. Rev. D 74 (2006) 086005 [hep-th/0608008] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  73. A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [SPIRES].

    ADS  Google Scholar 

  74. R. Kerner, Cosmology without singularity and nonlinear gravitational lagrangians, Gen. Rel. Grav. 14 (1982) 453 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  75. J. Barrow and A. Ottewill, The stability of general relativistic cosmological theory, J. Phys. A 16 (1983) 2757 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. V. Faraoni, Solar system experiments do not yet veto modified gravity models, Phys. Rev. D 74 (2006) 023529 [gr-qc/0607016] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  77. H.J. Schmidt, Fourth order gravity: equations, history, and applications to cosmology, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 209 [gr-qc/0602017] [SPIRES].

    ADS  MATH  Google Scholar 

  78. S. Nojiri and S.D. Odintsov, Modified gravity with ln R terms and cosmic acceleration, Gen. Rel. Grav. 36 (2004) 1765 [hep-th/0308176] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  79. S.D. Odintsov and S. Nojiri, The minimal curvature of the universe in modified gravity and conformal anomaly resolution of the instabilities, Mod. Phys. Lett. A 19 (2004) 627 [hep-th/0310045] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. M.C.B. Abdalla, S. Nojiri and S.D. Odintsov, Consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday, Class. Quant. Grav. 22 (2005) L35.

    MathSciNet  ADS  Google Scholar 

  81. S. Nojiri and S.D. Odintsov, Where new gravitational physics comes from: M-theory, Phys. Lett. B 576 (2003) 5 [hep-th/0307071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  82. S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [SPIRES].

    ADS  Google Scholar 

  83. S. Capozziello, S. Nojiri and S.D. Odintsov, Dark energy: the equation of state description versus scalar-tensor or modified gravity, Phys. Lett. B 634 (2006) 93 [hep-th/0512118] [SPIRES].

    ADS  Google Scholar 

  84. M.R. Setare, Holographic modified gravity, Int. J. Mod. Phys. D 17 (2008) 2219 [arXiv:0901.3252] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  85. S. Nojiri, S.D. Odintsov and D. Saez-Gomez, Cosmological reconstruction of realistic modified f(R) gravities, Phys. Lett. B 681 (2009) 74 [arXiv:0908.1269] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  86. Y. Bisabr, Comments on scalar-tensor representation of f(R) theories, Phys. Scr. 80 (2009) 045902.

    ADS  Google Scholar 

  87. A. Khodam-Mohammadi and M. Malekjani, Agegraphic reconstruction of modified f(R) and \( f\left( \mathcal{G} \right) \) gravities, Astrophys. Space Sci. 331 (2011) 673 [arXiv:1007.2705] [SPIRES].

    ADS  MATH  Google Scholar 

  88. S. Capozziello, S. Nojiri, S.D. Odintsov and A. Troisi, Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase, Phys. Lett. B 639 (2006) 135 [astro-ph/0604431] [SPIRES].

    ADS  Google Scholar 

  89. S. Nojiri and S.D. Odintsov, Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration, Phys. Rev. D 68 (2003) 123512 [hep-th/0307288] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. M. Ferraris, M. Francaviglia and I. Volovich, The universality of vacuum Einstein equations with cosmological constant, Class. Quant. Grav. 11 (1994) 1505 [gr-qc/9303007] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  91. G. Allemandi, A. Borowiec and M. Francaviglia, Accelerated cosmological models in first-order non-linear gravity, Phys. Rev. D 70 (2004) 043524 [hep-th/0403264] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  92. G. Allemandi, A. Borowiec and M. Francaviglia, Accelerated cosmological models in Ricci squared gravity, Phys. Rev. D 70 (2004) 103503 [hep-th/0407090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. X. Wu and Z.-H. Zhu, Reconstructing f(R) theory according to holographic dark energy, Phys. Lett. B 660 (2008) 293 [arXiv:0712.3603] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. K. Nozari and T. Azizi, Phantom-like behavior in f(R)-gravity, Phys. Lett. B 680 (2009) 205 [arXiv:0909.0351] [SPIRES].

    ADS  Google Scholar 

  95. S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115 [hep-th/0601213] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  96. H. Mohseni Sadjadi, Generalized second law in phantom dominated universe, Phys. Rev. D 73 (2006) 063525 [gr-qc/0512140] [SPIRES].

    ADS  Google Scholar 

  97. M. Li, X.-D. Li, S. Wang and X. Zhang, Holographic dark energy models: A comparison from the latest observational data, JCAP 06 (2009) 036 [arXiv:0904.0928] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  98. S. Nojiri and S.D. Odintsov, Unifying inflation with ΛCDM epoch in modified f(R) gravity consistent with Solar System tests, Phys. Lett. B 657 (2007) 238 [arXiv:0707.1941] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  99. S. Nojiri and S.D. Odintsov, Modified f(R) gravity unifying R m inflation with ΛCDM epoch, Phys. Rev. D 77 (2008) 026007 [arXiv:0710.1738] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. U. Alam, V. Sahni and A.A. Starobinsky, The case for dynamical dark energy revisited, JCAP 06 (2004) 008 [astro-ph/0403687] [SPIRES].

    ADS  Google Scholar 

  101. D. Huterer and A. Cooray, Uncorrelated estimates of dark energy evolution, Phys. Rev. D 71 (2005) 023506 [astro-ph/0404062] [SPIRES].

    ADS  Google Scholar 

  102. Y. Wang and M. Tegmark, Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae, Phys. Rev. D 71 (2005) 103513 [astro-ph/0501351] [SPIRES].

    ADS  Google Scholar 

  103. A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity, JETP Lett. 86 (2007) 157 [arXiv:0706.2041] [SPIRES].

    ADS  Google Scholar 

  104. L.N. Granda, Reconstructing the f(R) gravity from the holographic principle, arXiv:0812.1596 [SPIRES].

  105. V. Faraoni, f(R) gravity: successes and challenges, arXiv:0810.2602 [SPIRES].

  106. K. Henttunen, T. Multamaki and I. Vilja, Stellar configurations in f(R) theories of gravity, Phys. Rev. D 77 (2008) 024040 [arXiv:0705.2683] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  107. S. Capozziello, V.F. Cardone and V. Salzano, Cosmography of f(R) gravity, Phys. Rev. D 78 (2008) 063504 [arXiv:0802.1583] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  108. T.P. Sotiriou, 6 + 1 lessons from f(R) gravity, J. Phys. Conf. Ser. 189 (2009) 012039.

    ADS  Google Scholar 

  109. W.-T. Lin, J.-A. Gu and P. Chen, Cosmological and Solar-System tests of f(R) modified gravity, arXiv:1009.3488 [SPIRES].

  110. S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from f(R) theory to Lorentz non-invariant models, arXiv:1011.0544 [SPIRES].

  111. Y. Bisabr, Coincidence problem in f(R) gravity models, Phys. Rev. D 82 (2010) 124041 [arXiv:1012.0405] [SPIRES].

    ADS  Google Scholar 

  112. W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade Solar-System tests, Phys. Rev. D 76 (2007) 064004 [arXiv:0705.1158] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Karami.

Additional information

ArXiv ePrint: 1004.1805

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, K., Khaledian, M.S. Reconstructing f(R) modified gravity from ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models. J. High Energ. Phys. 2011, 86 (2011). https://doi.org/10.1007/JHEP03(2011)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)086

Keywords

Navigation