Skip to main content
Log in

On the energy dependence of the dipole-proton cross section in deep inelastic scattering

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the dipole picture of high-energy virtual-photon-proton scattering. It is shown that different choices for the energy variable in the dipole cross section used in the literature are not related to each other by simple arguments equating the typical dipole size and the inverse photon virtuality, contrary to what is often stated. We argue that the good quality of fits to structure functions that use Bjorken-x as the energy variable — which is strictly speaking not justified in the dipole picture — can instead be understood as a consequence of the sign of scaling violations that occur for increasing Q 2 at fixed small x. We show that the dipole formula for massless quarks has the structure of a convolution. From this we obtain derivative relations between the structure function F 2 at large and small Q 2 and the dipole-proton cross section at small and large dipole size r, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.N. Nikolaev and B.G. Zakharov, Colour transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys. C 49 (1991) 607 [SPIRES].

    Google Scholar 

  2. N.N. Nikolaev and B.G. Zakharov, Pomeron structure function and diffraction dissociation of virtual photons in perturbative QCD, Z. Phys. C 53 (1992) 331 [SPIRES].

    ADS  Google Scholar 

  3. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].

    Article  ADS  Google Scholar 

  4. ZEUS collaboration, J. Breitweg et al., Measurement of the proton structure function F 2 at very low Q 2 at HERA, Phys. Lett. B 487 (2000) 53 [hep-ex/0005018] [SPIRES].

    ADS  Google Scholar 

  5. H1 collaboration, C. Adloff et al., Deep-inelastic inclusive ep scattering at low x and a determination of α(s), Eur. Phys. J. C 21 (2001) 33 [hep-ex/0012053] [SPIRES].

    Article  ADS  Google Scholar 

  6. ZEUS collaboration, S. Chekanov et al., Measurement of the neutral current cross section and F 2 structure function for deep inelastic e + p scattering at HERA, Eur. Phys. J. C 21 (2001) 443 [hep-ex/0105090] [SPIRES].

    ADS  Google Scholar 

  7. H1 collaboration, C. Adloff et al., Measurement and QCD analysis of neutral and charged current cross sections at HERA, Eur. Phys. J. C 30 (2003) 1 [hep-ex/0304003] [SPIRES].

    ADS  Google Scholar 

  8. ZEUS collaboration, S. Chekanov et al., High-Q 2 neutral current cross sections in e + p deep inelastic scattering at \( \sqrt {s} = 318 \) GeV, Phys. Rev. D 70 (2004) 052001 [hep-ex/0401003] [SPIRES].

    ADS  Google Scholar 

  9. H1 and ZEUS collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive ep scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [SPIRES].

    Article  ADS  Google Scholar 

  10. The EIC working group, C. Aidala et al., A high luminosity, high energy electron-ion-collider — A white paper prepared for the NSAC LRP 2007, http://web.mit.edu/eicc/DOCUMENTS/EIC_LRP-20070424.pdf.

  11. T.H. Bauer, R.D. Spital, D.R. Yennie and F.M. Pipkin, The hadronic properties of the photon in high-energy interactions, Rev. Mod. Phys. 50 (1978) 261 [Erratum ibid. 51 (1979) 407] [SPIRES].

    Article  ADS  Google Scholar 

  12. D. Schildknecht, Vector meson dominance, Acta Phys. Polon. B 37 (2006) 595 [hep-ph/0511090] [SPIRES].

    ADS  Google Scholar 

  13. A. Donnachie, H.G. Dosch, P.V. Landshoff and O. Nachtmann, Pomeron physics and QCD, Cambridge University Press, Cambridge U.K. (2002) [SPIRES].

    Book  MATH  Google Scholar 

  14. F.E. Close, A. Donnachie and G. Shaw, Electromagnetic interactions and hadronic structure, Cambridge University Press, Cambridge U.K. (2007) [SPIRES].

    Book  Google Scholar 

  15. C. Ewerz and O. Nachtmann, Towards a nonperturbative foundation of the dipole picture: I. Functional methods, Annals Phys. 322 (2007) 1635 [hep-ph/0404254] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. C. Ewerz and O. Nachtmann, Towards a nonperturbative foundation of the dipole picture: II. High energy limit, Annals Phys. 322 (2007) 1670 [hep-ph/0604087] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  17. C. Ewerz and O. Nachtmann, Bounds on ratios of DIS structure functions from the color dipole picture, Phys. Lett. B 648 (2007) 279 [hep-ph/0611076] [SPIRES].

    ADS  Google Scholar 

  18. C. Ewerz, A. von Manteuffel and O. Nachtmann, On the range of validity of the dipole picture, Phys. Rev. D 77 (2008) 074022 [arXiv:0708.3455] [SPIRES].

    ADS  Google Scholar 

  19. K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [SPIRES].

    ADS  Google Scholar 

  20. J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [SPIRES].

    ADS  Google Scholar 

  21. E. Iancu, K. Itakura and S. Munier, Saturation and BFKL dynamics in the HERA data at small x, Phys. Lett. B 590 (2004) 199 [hep-ph/0310338] [SPIRES].

    ADS  Google Scholar 

  22. J.L. Albacete, N. Armesto, J.G. Milhano and C.A. Salgado, Non-linear QCD meets data: a global analysis of lepton-proton scattering with running coupling BK evolution, Phys. Rev. D 80 (2009) 034031 [arXiv:0902.1112] [SPIRES].

    ADS  Google Scholar 

  23. H.G. Dosch, T. Gousset and H.J. Pirner, Nonperturbative γ p interaction in the diffractive regime, Phys. Rev. D 57 (1998) 1666 [hep-ph/9707264] [SPIRES].

    ADS  Google Scholar 

  24. J.R. Forshaw, G. Kerley and G. Shaw, Extracting the dipole cross-section from photo-and electro-production total cross-section data, Phys. Rev. D 60 (1999) 074012 [hep-ph/9903341] [SPIRES].

    ADS  Google Scholar 

  25. H. Kowalski and D. Teaney, An impact parameter dipole saturation model, Phys. Rev. D 68 (2003) 114005 [hep-ph/0304189] [SPIRES].

    ADS  Google Scholar 

  26. G. Watt and H. Kowalski, Impact parameter dependent colour glass condensate dipole model, Phys. Rev. D 78 (2008) 014016 [arXiv:0712.2670] [SPIRES].

    ADS  Google Scholar 

  27. L. Motyka, K. Golec-Biernat and G. Watt, Dipole models and parton saturation in ep scattering, arXiv:0809.4191 [SPIRES].

  28. G. Cvetič, D. Schildknecht, B. Surrow and M. Tentyukov, The generalized vector dominance/colour-dipole picture of deep-inelastic scattering at low x, Eur. Phys. J. C 20 (2001) 77 [hep-ph/0102229] [SPIRES].

    Article  ADS  Google Scholar 

  29. A. Donnachie and H.G. Dosch, A comprehensive approach to structure functions, Phys. Rev. D 65 (2002) 014019 [hep-ph/0106169] [SPIRES].

    ADS  Google Scholar 

  30. O. Nachtmann, Elementary particle physics: concepts and phenomena, Springer Verlag, Berlin Germany (1990) [SPIRES].

    Google Scholar 

  31. L.N. Hand, Experimental investigation of pion electroproduction, Phys. Rev. 129 (1963) 1834 [SPIRES].

    Article  ADS  Google Scholar 

  32. NNPDF collaboration, L. Del Debbio, S. Forte, J.I. Latorre, A. Piccione and J. Rojo, Unbiased determination of the proton structure function F 2(p) with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [SPIRES].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Ewerz.

Additional information

ArXiv ePrint:1101.0288

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewerz, C., von Manteuffel, A. & Nachtmann, O. On the energy dependence of the dipole-proton cross section in deep inelastic scattering. J. High Energ. Phys. 2011, 62 (2011). https://doi.org/10.1007/JHEP03(2011)062

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)062

Keywords

Navigation