Skip to main content
Log in

Meson-meson scattering in QCD-like theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss meson-meson scattering at next-to-next-to-leading order in the chiral expansion for QCD-like theories with general n degenerate flavours for the cases with a complex, real and pseudo-real representation. i.e. with global symmetry and breaking pattern SU(n) L × SU(n) R → SU(n) V , SU(2n) → SO(2n) and SU(2n) → Sp(2n). We obtain fully analytical expressions for all these cases. We discuss the general structure of the amplitude and the structure of the possible intermediate channels for all three cases. We derive the expressions for the lowest partial wave scattering length in each channel and present some representative numerical results. We also show various relations between the different cases in the limit of large n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bijnens and J. Lu, Technicolor and other QCD-like theories at next-to-next-to-leading order, JHEP 11 (2009) 116 [arXiv:0910.5424] [SPIRES].

    Article  ADS  Google Scholar 

  2. M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175 (1980) 197 [SPIRES].

    Article  ADS  Google Scholar 

  3. J. Preskill, Subgroup Alignment in Hypercolor Theories, Nucl. Phys. B 177 (1981) 21 [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Dimopoulos, Technicolored Signatures, Nucl. Phys. B 168 (1980) 69 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [SPIRES].

    Google Scholar 

  6. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].

    ADS  Google Scholar 

  8. T. Appelquist et al., Toward TeV Conformality, Phys. Rev. Lett. 104 (2010) 071601 [arXiv:0910.2224] [SPIRES].

    Article  ADS  Google Scholar 

  9. A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett. B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].

    ADS  Google Scholar 

  10. L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, The infrared dynamics of Minimal Walking Technicolor, Phys. Rev. D 82 (2010) 014510 [arXiv:1004.3206] [SPIRES].

    ADS  Google Scholar 

  11. T. DeGrand, Y. Shamir and B. Svetitsky, Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 79 (2009) 034501 [arXiv:0812.1427] [SPIRES].

    ADS  Google Scholar 

  12. S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [SPIRES].

    Article  ADS  Google Scholar 

  14. J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].

    Article  ADS  Google Scholar 

  15. Y.I. Kogan, M.A. Shifman and M.I. Vysotsky, Spontaneous Breaking Of Chiral Symmetry For Real Fermions And N = 2 Susy Yang-Mills Theory, Sov. J. Nucl. Phys. 42 (1985) 318 [Yad. Fiz. 42 (1985) 504] [SPIRES].

    Google Scholar 

  16. H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. A.V. Smilga and J.J.M. Verbaarschot, Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fermions, Phys. Rev. D 51 (1995) 829 [hep-th/9404031] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].

    Article  ADS  Google Scholar 

  19. J. Gasser and H. Leutwyler, Light Quarks at Low Temperatures, Phys. Lett. B 184 (1987) 83 [SPIRES].

    ADS  Google Scholar 

  20. K. Splittorff, D. Toublan and J.J.M. Verbaarschot, Diquark condensate in QCD with two colors at next-to-leading order, Nucl. Phys. B 620 (2002) 290 [hep-ph/0108040] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral Lagrangian of order p 6, JHEP 02 (1999) 020 [hep-ph/9902437] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys. 280 (2000) 100 [hep-ph/9907333] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17 (1966) 616 [SPIRES].

    Article  ADS  Google Scholar 

  24. J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Elastic ππscattering to two loops, Phys. Lett. B 374 (1996) 210 [hep-ph/9511397] [SPIRES].

    ADS  Google Scholar 

  25. J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Pion pion scattering at low energy, Nucl. Phys. B 508 (1997) 263 [Erratum ibid. B 517 (1998) 639] [hep-ph/9707291] [SPIRES].

    Article  ADS  Google Scholar 

  26. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [SPIRES].

    Article  ADS  Google Scholar 

  27. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [SPIRES].

    Article  ADS  Google Scholar 

  28. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. G.F. Chew and S. Mandelstam, Theory of low-energy pion pion interactions, Phys. Rev. 119 (1960) 467 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. D.E. Neville, Elastic Scattering of Pseudosscalar Mesons and SU n Symmetry, Phys. Rev. 132 (1963) 844 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  31. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  32. G. Girardi, A. Sciarrino and P. Sorba, Kronecker Products For SO(2p) Representations, J. Phys. A 15 (1982) 1119 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. G. Girardi, A. Sciarrino and P. Sorba, Kronecker Product Of Sp(2n) Representations Using Generalized Young Tableaux, J. Phys. A 16 (1983) 2609 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. J. Stern, H. Sazdjian and N.H. Fuchs, What π − π scattering tells us about chiral perturbation theory, Phys. Rev. D 47 (1993) 3814 [hep-ph/9301244] [SPIRES].

    ADS  Google Scholar 

  35. J. Gasser and M.E. Sainio, Two-loop integrals in chiral perturbation theory, Eur. Phys. J. C 6 (1999) 297 [hep-ph/9803251] [SPIRES].

    Article  ADS  Google Scholar 

  36. http://www.thep.lu.se/∼bijnens/chpt.html.

  37. G. Amoros, J. Bijnens and P. Talavera, QCD isospin breaking in meson masses, decay constants and quark mass ratios, Nucl. Phys. B 602 (2001) 87 [hep-ph/0101127] [SPIRES].

    Article  ADS  Google Scholar 

  38. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

  39. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  40. J. Bijnens and P. Talavera, Pion and kaon electromagnetic form factors, JHEP 03 (2002) 046 [hep-ph/0203049] [SPIRES].

    Article  ADS  Google Scholar 

  41. M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, The Low-energy pi pi amplitude to one and two loops, Nucl. Phys. B 457 (1995) 513 [hep-ph/9507319] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Bijnens.

Additional information

ArXiv ePrint: 1102.0172

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijnens, J., Lu, J. Meson-meson scattering in QCD-like theories. J. High Energ. Phys. 2011, 28 (2011). https://doi.org/10.1007/JHEP03(2011)028

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)028

Keywords

Navigation