Skip to main content
Log in

The Casimir effect for conical pistons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we utilize ζ-function regularization techniques in order to compute the Casimir force for massless scalar fields subject to Dirichlet and Neumann boundary conditions in the setting of the conical piston. The piston geometry is obtained by dividing the bounded generalized cone into two regions separated by its cross section positioned at a with a ∈ (0, b) with b > 0. We obtain expressions for the Casimir force that are valid in any dimension for both Dirichlet and Neumann boundary conditions in terms of the spectral ζ-function of the piston. As a particular case, we specify the piston to be a d-dimensional sphere and present explicit results for d = 2, 3, 4, 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bailin and A. Love, Orbifold compactifications of string theory, Phys. Rept. 315 (1999) 285 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. E.W. Barnes, On the theory of the multiple gamma function, Trans. Camb. Philos. Soc. 19 (1903) 374.

    Google Scholar 

  3. E.W. Barnes, On the asymptotic expansion of integral functions of multiple linear sequences, Trans. Camb. Philos. Soc. 19 (1903) 426.

    Google Scholar 

  4. G. Barton, Casimir piston and cylinder, perturbatively, Phys. Rev. D 73 (2006) 065018 [SPIRES].

    ADS  Google Scholar 

  5. E.R. Bezerra de Mello and A.A. Saharian, Spinor Casimir effect for concentric spherical shells in the global monopole spacetime, Class. Quant. Grav. 23 (2006) 4673 [hep-th/0603191] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S. Blau, M. Visser and A. Wipf, Zeta functions and the Casimir energy, Nucl. Phys. B 310 (1988) 163 [arXiv:0906.2817] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Bordag, K. Kirsten and J.S. Dowker, Heat kernels and functional determinants on the generalized cone, Commun. Math. Phys. 182 (1996) 371 [hep-th/9602089] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Bordag, E. Elizalde and K. Kirsten, Heat kernel coefficients of the Laplace operator on the D-dimensional ball, J. Math. Phys. 37 (1996) 895 [hep-th/9503023] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Bordag, B. Geyer, K. Kirsten and E. Elizalde, Zeta function determinant of the Laplace operator on the D-dimensional ball, Commun. Math. Phys. 179 (1996) 215 [hep-th/9505157] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Bordag, U. Mohideen and V.M. Mostepanenko, New developments in the Casimir effect, Phys. Rept. 353 (2001) 1 [quant-ph/0106045] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Bordag, G.L. Klimchitskaya, U. Mohideen and V.M. Mostepanenko, Advances in the Casimir effect, Oxford University Press, Oxford U.K. (2009) [SPIRES].

    Book  MATH  Google Scholar 

  12. A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, Analytic aspects of quantum fields, World Scientific Publishing, Singapore (2003) [SPIRES].

    Book  Google Scholar 

  13. H.B.G. Casimir, On the attraction between two perfectly conducting plates, Indag. Math. 10 (1948) 261 [Kon. Ned. Akad. Wetensch. Proc. 51 (1948) 793] [Front. Phys. 65 (1987) 342] [Kon. Ned. Akad. Wetensch. Proc. 100N 3-4 (1997) 61] [SPIRES].

    Google Scholar 

  14. R.M. Cavalcanti, Casimir force on a piston, Phys. Rev. D 69 (2004) 065015 [quant-ph/0310184] [SPIRES].

    ADS  Google Scholar 

  15. P. Chang and J.S. Dowker, Vacuum energy on orbifold factors of spheres, Nucl. Phys. B 395 (1993) 407 [hep-th/9210013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Cheeger, Spectral geometry of singular Riemmanian spaces, J. Diff. Geom. 18 (1983) 575.

    MathSciNet  MATH  Google Scholar 

  17. H. Cheng, The Casimir force on a piston in Randall-Sundrum models, Commun. Theor. Phys. 53 (2010) 1125 [arXiv:0904.4183] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  18. A.C. Dixon, On a property of Bessel’s functions, Messenger of Mathematics 32 (1903) 7.

    Google Scholar 

  19. J.S. Dowker, Functional determinants on spheres and sectors, J. Math. Phys. 35 (1994) 4989 [hep-th/9312080] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J.S. Dowker and K. Kirsten, The Barnes ζ-function, sphere determinants and Glaisher-Kinkelin-Bendersky constants, Anal. Appl. 3 (2005) 45 [hep-th/0301143] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Edery, Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields, J. Phys. A 39 (2006) 685 [math-ph/0510056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. E. Elizalde, Ten physical applications of spectral zeta functions, Lect. Notes Phys. M35 (1995) 1 [SPIRES].

    MathSciNet  Google Scholar 

  23. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko and S. Zerbini, Zeta regularization techniques with applications, World Scientific, Singapore (1994) [SPIRES].

    Book  MATH  Google Scholar 

  24. A. Erdélyi, Higher transcendental functions. Volume II, Bateman Project Staff, McGraw-Hill, New York U.S.A. (1953).

    Google Scholar 

  25. G. Esposito, A.Y. Kamenshchik and G. Pollifrone, Euclidean quantum gravity on manifolds with boundaries, Kluwer Academic Publishers, Netherlands (1997).

    Book  Google Scholar 

  26. A. Flachi and D.J. Toms, Quantized bulk scalar fields in the Randall-Sundrum brane-model, Nucl. Phys. B 610 (2001) 144 [hep-th/0103077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Flachi and G. Fucci, Zeta determinant for Laplace operators on Riemann caps, J. Math. Phys. 52 (2011) 023503 [arXiv:1004.0063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Fucci and K. Kirsten, Small mass expansion of functional determinants on the generalized cone, J. Phys. A 43 (2010) 365204 [arXiv:0912.3840] [SPIRES].

    MathSciNet  Google Scholar 

  29. S.A. Fulling and K. Kirsten, Comment on: “The Casimir force on a piston in the spacetime with extra compactified dimensions” [Phys. Lett. B 668 (2008) 72], Phys. Lett. B 671 (2009) 179 [arXiv:0811.0779] [SPIRES].

    Article  ADS  Google Scholar 

  30. P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, CRC Press, Boca Raton U.S.A. (1995) [SPIRES].

    MATH  Google Scholar 

  31. I.S. Gradshtein and I.M. Ryzhik, Table of integrals, series and products, A. Jeffrey and D. Zwillinger eds., Academic Press, Oxford U.K. (2007).

    Google Scholar 

  32. M.P. Hertzberg, R.L. Jaffe, M. Kardar and A. Scardicchio, Attractive Casimir forces in a closed geometry, Phys. Rev. Lett. 95 (2005) 250402

    Article  MathSciNet  ADS  Google Scholar 

  33. M.P. Hertzberg, R.L. Jaffe, M. Kardar and A. Scardicchio, Casimir forces in a piston geometry at zero and finite temperatures, Phys. Rev. D 76 (2007) 045016 [arXiv:0705.0139] [SPIRES].

    ADS  Google Scholar 

  34. K. Kirsten, Spectral functions in mathematics and physics, Chapman & Hall/CRC P ress, Boca Raton U.S.A. (2001) [SPIRES].

    Book  Google Scholar 

  35. M.P. Hertzberg, R.L. Jaffe, M. Kardar and A. Scardicchio, Attractive Casimir forces in a closed geometry, Phys. Rev. Lett. 95 (2005) 250402 [quant-ph/0509071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. X.-z. Li, H.-b. Cheng, J.-m. Li and X.-h. Zhai, Attractive or repulsive nature of Casimir force for rectangular cavity, Phys. Rev. D 56 (1997) 2155 [SPIRES].

    ADS  Google Scholar 

  37. V.N. Marachevsky, Casimir interaction of two plates inside a cylinder, Phys. Rev. D 75 (2007) 085019 [hep-th/0703158] [SPIRES].

    ADS  Google Scholar 

  38. K.A. Milton, The Casimir effect: physical manifestations of zero-point energy, World Scientific Publishing, Singapore (2001) [hep-th/9901011] [SPIRES].

    Book  MATH  Google Scholar 

  39. F.W.J. Olver, Asymptotics and special functions, AK Peters, Natick U.S.A. (1997).

    MATH  Google Scholar 

  40. F.W.J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. R. Soc. Lond. A 247 (1954) 328.

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Rypestøl and I. Brevik, Finite temperature Casimir effect in Randall-Sundrum models, New J. Phys. 12 (2010) 013022 [arXiv:0909.0145] [SPIRES].

    Article  ADS  Google Scholar 

  42. L.P. Teo, Finite temperature Casimir effect in Kaluza-Klein spacetime, Nucl. Phys. B 819 (2009) 431 [arXiv:0901.2195] [SPIRES].

    Article  ADS  Google Scholar 

  43. L.P. Teo, Finite temperature Casimir effect in spacetime with extra compactified dimensions, Phys. Lett. B 672 (2009) 190 [arXiv:0812.4641] [SPIRES].

    ADS  Google Scholar 

  44. L.P. Teo, Finite temperature Casimir effect for massive scalar field in spacetime with extra dimensions, JHEP 06 (2009) 076 [arXiv:0903.3765] [SPIRES].

    Article  ADS  Google Scholar 

  45. L.P. Teo, Casimir effect of electromagnetic field in D-dimensional spherically symmetric cavities, Phys. Rev. D 82 (2010) 085009 [arXiv:1003.5986] [SPIRES].

    ADS  Google Scholar 

  46. G. von Gersdorff, One-loop effective action in orbifold compactifications, JHEP 08 (2008) 097 [arXiv:0805.4542] [SPIRES].

    Article  Google Scholar 

  47. G.N. Watson A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge U.K. (1944).

    MATH  Google Scholar 

  48. X.-h. Zhai and X.-z. Li, Casimir pistons with hybrid boundary conditions, Phys. Rev. D 76 (2007) 047704 [hep-th/0612155] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kirsten.

Additional information

ArXiv ePrint: 1101.5409

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fucci, G., Kirsten, K. The Casimir effect for conical pistons. J. High Energ. Phys. 2011, 16 (2011). https://doi.org/10.1007/JHEP03(2011)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)016

Keywords

Navigation