Skip to main content
Log in

Flavor conversion of cosmic neutrinos from hidden jets

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

High energy cosmic neutrino fluxes can be produced inside relativistic jets under the envelopes of collapsing stars. In the energy range E ∼ (0.3 − 105)GeV, flavor conversion of these neutrinos is modified by various matter effects inside the star and the Earth. We present a comprehensive (both analytic and numerical) description of the flavor conversion of these neutrinos which includes:

  1. (i)

    oscillations inside jets,

  2. (ii)

    flavor-to-mass state transitions in an envelope,

  3. (iii)

    loss of coherence on the way to observer, and

  4. (iv)

    oscillations of the mass states inside the Earth.

We show that conversion has several new features which are not realized in other objects, in particular interference effects (“L- and H- wiggles”) induced by the adiabaticity violation. The ν − ν scattering inside jet and inelastic neutrino interactions in the envelope may produce some additional features at E ≳ 104 GeV.We study dependence of the probabilities and flavor ratios in the matter-affected region on angles θ 13 and θ 23, on the CP-phase δ, as well as on the initial flavor content and density profile of the star. We show that measurements of the energy dependence of the flavor ratios will, in principle, allow to determine independently the neutrino and astrophysical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Halzen, IceCube: the rationale for kilometer-scale neutrino detectors, arXiv:0910.0436 [SPIRES].

  2. V. Berezinsky, UHE neutrino astronomy and neutrino oscillations, in Proceedings of the 4th International Workshop “Neutrino Oscillations in Venice”, Milla Baldo Ceolin ed., pg. 137 [arXiv:0901.1428] [SPIRES].

  3. E. Waxman, Neutrino astrophysics: a new tool for exploring the universe, Science 315 (2007) 63 [astro-ph/0701168] [SPIRES].

    Article  ADS  Google Scholar 

  4. F.W. Stecker, C. Done, M.H. Salamon and P. Sommers, High-energy neutrinos from active galactic nuclei, Phys. Rev. Lett. 66 (1991) 2697 [Erratum ibid. 69 (1992) 2738] [SPIRES].

    Article  ADS  Google Scholar 

  5. L. Nellen, K. Mannheim and P.L. Biermann, Neutrino production through hadronic cascades in AGN accretion disks, Phys. Rev. D 47 (1993) 5270 [hep-ph/9211257] [SPIRES].

    ADS  Google Scholar 

  6. A.P. Szabo and R.J. Protheroe, Implications of particle acceleration in active galactic nuclei for cosmic rays and high-energy neutrino astronomy, Astropart. Phys. 2 (1994) 375 [astro-ph/9405020] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Atoyan and C.D. Dermer, High-energy neutrinos from photomeson processes in blazars, Phys. Rev. Lett. 87 (2001) 221102 [astro-ph/0108053] [SPIRES].

    Article  ADS  Google Scholar 

  8. J. Alvarez-Muniz and P. Mészáros, High energy neutrinos from radio-quiet AGNs, Phys. Rev. D 70 (2004) 123001 [astro-ph/0409034] [SPIRES].

    ADS  Google Scholar 

  9. E. Waxman and J.N. Bahcall, High energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Atoyan and C.D. Dermer, High energy neutrinos from gamma-ray bursts, Phys. Rev. Lett. 91 (2003) 071102 [astro-ph/0301030] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Razzaque, P. Mészáros and E. Waxman, Neutrino signatures of the supernova-gamma ray burst relationship, Phys. Rev. D 69 (2004) 023001 [astro-ph/0308239] [SPIRES].

    ADS  Google Scholar 

  12. K. Murase, K. Ioka, S. Nagataki and T. Nakamura, High energy neutrinos and cosmic-rays from low-luminosity gamma-ray bursts?, Astrophys. J. 651 (2006) L5 [astro-ph/0607104] [SPIRES].

    Article  ADS  Google Scholar 

  13. N. Gupta and B. Zhang, Neutrino spectra from low and high luminosity populations of gamma ray bursts, Astropart. Phys. 27 (2007) 386 [astro-ph/0606744] [SPIRES].

    Article  ADS  Google Scholar 

  14. E. Waxman and A. Loeb, TeV neutrinos and GeV photons from shock breakout in supernovae, Phys. Rev. Lett. 87 (2001) 071101 [astro-ph/0102317] [SPIRES].

    Article  ADS  Google Scholar 

  15. X.-Y. Wang, S. Razzaque, P. Mészáros and Z.-G. Dai, High-energy cosmic rays and neutrinos from semi- relativistic hypernovae, Phys. Rev. D 76 (2007) 083009 [arXiv:0705.0027] [SPIRES].

    ADS  Google Scholar 

  16. J. Alvarez-Muniz and F. Halzen, High-energy neutrinos from the cosmic accelerator RX J1713.7 − 3946, Astrophys. J. 576 (2002) L33 [astro-ph/0205408] [SPIRES].

    Article  ADS  Google Scholar 

  17. M.L. Costantini and F. Vissani, Expected neutrino signal from supernova remnant RX J1713.7 − 3946 and flavor oscillations, Astropart. Phys. 23 (2005) 477 [astro-ph/0411761] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Razzaque, P. Mészáros and E. Waxman, TeV neutrinos from core collapse supernovae and hypernovae, Phys. Rev. Lett. 93 (2004) 181101 [Erratum ibid. 94 (2005) 109903] [astro-ph/0407064] [SPIRES].

    Article  ADS  Google Scholar 

  19. D.C. Leonard, A.V. Filippenko, A.J. Barth and T. Matheson, Evidence for asphericity in the type IIn supernova 1998S, Astrophys. J. 536 (2000) 239 [astro-ph/9908040] [SPIRES].

    Article  ADS  Google Scholar 

  20. L. Wang, D.A. Howell, P. Hoflich and J.C. Wheeler, Bipolar supernova explosions, Astrophys. J. 550 (2001) 1030.

    Article  ADS  Google Scholar 

  21. J. Granot and E. Ramirez-Ruiz, The case for a misaligned relativistic jet from SN 2001em, Astrophys. J. 609 (2004) L9 [astro-ph/0403421] [SPIRES].

    Article  ADS  Google Scholar 

  22. S. Ando and J.F. Beacom, Revealing the supernova-gamma-ray burst connection with TeV neutrinos, Phys. Rev. Lett. 95 (2005) 061103 [astro-ph/0502521] [SPIRES].

    Article  ADS  Google Scholar 

  23. S. Razzaque, P. Mészáros and E. Waxman, High energy neutrinos from a slow jet model of core collapse supernovae, Mod. Phys. Lett. A 20 (2005) 2351 [astro-ph/0509729] [SPIRES].

    ADS  Google Scholar 

  24. S. Ando, J.F. Beacom and H. Yuksel, Detection of neutrinos from supernovae in nearby galaxies, Phys. Rev. Lett. 95 (2005) 171101 [astro-ph/0503321] [SPIRES].

    Article  ADS  Google Scholar 

  25. Fermi LAT collaboration, A.A. Abdo et al., Detection of gamma-ray emission from the starburst galaxies M82 and NGC 253 with the Large Area Telescope on Fermi, arXiv:0911.5327 [SPIRES].

  26. IceCube collaboration, J. Ahrens et al., Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos, Astropart. Phys. 20 (2004) 507 [astro-ph/0305196] [SPIRES].

    Article  ADS  Google Scholar 

  27. ANTARES collaboration, J.A. Aguilar et al., First results of the instrumentation line for the deep-sea ANTARES neutrino telescope, Astropart. Phys. 26 (2006) 314 [astro-ph/0606229] [SPIRES].

    Article  ADS  Google Scholar 

  28. U.F. Katz, KM3NeT : towards a KM 3 mediterranean neutrino telescope, Presented at 2nd VLVNT Workshop on Very Large Neutrino Telescope (V LV NT 2), Catania Italy November 8–11 2005 [Nucl. Instrum. Meth. A 567 (2006) 457] [astro-ph/0606068] [SPIRES].

  29. M. Kowalski and A. Mohr, Detecting neutrino-transients with optical follow-up observations, Astropart. Phys. 27 (2007) 533 [astro-ph/0701618] [SPIRES].

    Article  ADS  Google Scholar 

  30. O. Mena, I. Mocioiu and S. Razzaque, Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources, Phys. Rev. D 75 (2007) 063003 [astro-ph/0612325] [SPIRES].

    ADS  Google Scholar 

  31. C. Lunardini and A.Y. Smirnov, The minimum width condition for neutrino conversion in matter, Nucl. Phys. B 583 (2000) 260 [hep-ph/0002152] [SPIRES].

    Article  ADS  Google Scholar 

  32. Y. Farzan and A.Y. Smirnov, Coherence and oscillations of cosmic neutrinos, Nucl. Phys. B 805 (2008) 356 [arXiv:0803.0495] [SPIRES].

    Article  ADS  Google Scholar 

  33. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].

    ADS  Google Scholar 

  34. L. Wolfenstein, Effects of matter on neutrino oscillations, in Neutrino-78, Purdue University C3, U.S.A. (1978) [SPIRES].

    Google Scholar 

  35. S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [SPIRES].

    Google Scholar 

  36. S.P. Mikheev and A.Y. Smirnov, Neutrino oscillations in a variable-density medium and ν-bursts due to the gravitational collapse of stars, Sov. Phys. JETP 64 (1986) 4 [Zh. Eksp. Teor. Fiz. 91 (1986) 7] [arXiv:0706.0454] [SPIRES].

    Google Scholar 

  37. A. MacFadyen and S.E. Woosley, Collapsars — gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J. 524 (1999) 262 [astro-ph/9810274] [SPIRES].

    Article  ADS  Google Scholar 

  38. Fermi LAT and Fermi GBM collaborations, A.A. Abdo et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323 (2009) 1688 [SPIRES].

    Article  ADS  Google Scholar 

  39. Fermi/GBM collaboration, A.A. Abdo et al., Fermi observations of GRB 090902B: a distinct spectral component in the prompt and delayed emission, Astrophys. J. 706 (2009) L138 [arXiv:0909.2470] [SPIRES].

    Article  Google Scholar 

  40. A.I. MacFadyen, S.E. Woosley and A. Heger, Supernovae, jets and collapsars, Astrophys. J. 550 (2001) 410 [astro-ph/9910034] [SPIRES].

    Article  ADS  Google Scholar 

  41. T. Piran, The physics of gamma-ray bursts, Rev. Mod. Phys. 76 (2004) 1143 [astro-ph/0405503] [SPIRES].

    Article  ADS  Google Scholar 

  42. P. Mészáros, Gamma-ray bursts, Rept. Prog. Phys. 69 (2006) 2259.

    Article  Google Scholar 

  43. T.K. Gaisser, Cosmic rays and particle physics, Cambridge University Press, Cambridge U.K. (1990).

    Google Scholar 

  44. R. Enberg, M.H. Reno and I. Sarcevic, High energy neutrinos from charm in astrophysicalsources, Phys. Rev. D 79 (2009) 053006 [arXiv:0808.2807] [SPIRES].

    ADS  Google Scholar 

  45. P. Lipari, Lepton spectra in the earth’s atmosphere, Astropart. Phys. 1 (1993) 195 [SPIRES].

    Article  ADS  Google Scholar 

  46. H.B.J. Koers and R.A.M.J. Wijers, Enhanced high-energy neutrino emission from choked gamma-ray bursts due to meson and muon acceleration, arXiv:0711.4791 [SPIRES].

  47. C.D. Matzner and C.F. McKee, The expulsion of stellar envelopes in core-collapse supernovae, Astrophys. J. 510 (1999) 379 [astro-ph/9807046] [SPIRES].

    Article  ADS  Google Scholar 

  48. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [SPIRES].

    Google Scholar 

  49. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  50. E.K. Akhmedov, Matter effects in short-baseline neutrino oscillations, Phys. Lett. B 503 (2001) 133 [hep-ph/0011136] [SPIRES].

    ADS  Google Scholar 

  51. A.S. Dighe and A.Y. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova, Phys. Rev. D 62 (2000) 033007 [hep-ph/9907423] [SPIRES].

    ADS  Google Scholar 

  52. S.T. Petcov, Exact analytic description of two neutrino oscillations in matter with exponentially varying density, Phys. Lett. B 200 (1988) 373 [SPIRES].

    ADS  Google Scholar 

  53. J.G. Learned and S. Pakvasa, Detecting tau-neutrino oscillations at PeV energies, Astropart. Phys. 3 (1995) 267 [hep-ph/9405296] [SPIRES].

    Article  ADS  Google Scholar 

  54. E. Bugaev, T. Montaruli, Y. Shlepin and I. Sokalski, Propagation of τ neutrinos and τ leptons through the earth and their detection in underwater/ice neutrino telescopes, Astropart. Phys. 21 (2004) 491 [hep-ph/0312295] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. DeYoung, S. Razzaque and D.F. Cowen, Astrophysical τ neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay, Astropart. Phys. 27 (2007) 238 [astro-ph/0608486] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soebur Razzaque.

Additional information

ArXiv ePrint: 0912.4028

National Research Council Research Associate. (Soebur Razzaque)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaque, S., Smirnov, A.Y. Flavor conversion of cosmic neutrinos from hidden jets. J. High Energ. Phys. 2010, 31 (2010). https://doi.org/10.1007/JHEP03(2010)031

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)031

Keywords

Navigation