Skip to main content
Log in

Warped hybrid inflation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a model of hybrid inflation within a controlled five-dimensional effective field theory framework. The inflaton and waterfall fields are realized as naturally light moduli of the 5D compactification. At the quantum level, waterfall loops must be cut off at a scale considerably lower than the inflaton field transit in order to preserve slow-roll dynamics without fine-tuning. We accomplish this by a significant warping, or redshift, between the extra-dimensional regions in which the inflaton and waterfall fields are localized. The mechanisms we employ have been separately realized in string theory, which suggests that a string UV completion of our model is possible. We study a part of the parameter space in which the cosmology takes a standard form, but we point out that it is also possible for some regions of space to end inflation by quantum tunneling. Such regions may provide new cosmological signals, which we will study in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [SPIRES].

    ADS  Google Scholar 

  2. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. D. Baumann, TASI lectures on inflation, arXiv:0907.5424 [SPIRES].

  4. L.M. Krauss, New constraints on Ino masses from cosmology. 1. Supersymmetric Inos, Nucl. Phys. B 227 (1983) 556 [SPIRES].

    Article  ADS  Google Scholar 

  5. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [SPIRES].

    ADS  Google Scholar 

  6. D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Randall, Supersymmetry and inflation, hep-ph/9711471 [SPIRES].

  8. K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo - Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [SPIRES].

    Article  ADS  Google Scholar 

  9. A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994) 748 [astro-ph/9307002] [SPIRES].

    ADS  Google Scholar 

  10. N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Pseudonatural inflation, JCAP 07 (2003) 003 [hep-th/0302034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. D.E. Kaplan and N.J. Weiner, Little inflatons and gauge inflation, JCAP 02 (2004) 005 [hep-ph/0302014] [SPIRES].

    ADS  Google Scholar 

  12. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  13. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  16. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Maldacena, unpublished remarks.

  19. E. Witten, Comments made during discussion at ITP Santa Barbara conference “New Dimensions in Field Theory and String Theory”, http://www.itp.ucsb.edu/online/susy_c99/discussion/.

  20. E.P. Verlinde and H.L. Verlinde, RG-flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  25. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  26. G.R. Dvali and S.H.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. A.R. Liddle and D. Wands, Microwave background constraints on extended inflation voids, Mon. Not. Roy. Astron. Soc. 253 (1991) 637 [SPIRES].

    ADS  Google Scholar 

  29. L. Susskind, The anthropic landscape of string theory, hep-th/0302219 [SPIRES].

  30. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [SPIRES].

    ADS  Google Scholar 

  31. Y. Hosotani, Dynamics of nonintegrable phases and gauge symmetry breaking, Ann. Phys. 190 (1989) 233 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Hatanaka, T. Inami and C.S. Lim, The gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601 [hep-th/9805067] [SPIRES].

    ADS  Google Scholar 

  33. I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [SPIRES].

    Article  ADS  Google Scholar 

  34. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].

    ADS  Google Scholar 

  35. G. von Gersdorff, N. Irges and M. Quirós, Bulk and brane radiative effects in gauge theories on orbifolds, Nucl. Phys. B 635 (2002) 127 [hep-th/0204223] [SPIRES].

    Article  ADS  Google Scholar 

  36. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  37. R. Sundrum, To the fifth dimension and back. (TASI 2004), hep-th/0508134 [SPIRES].

  38. P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall higgs in the universal Randall-Sundrum model, JHEP 08 (2006) 042 [hep-ph/0508279] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. E.W. Kolb and M.S. Turner, The early universe, Westview Press (1994).

  41. V. Marra, E.W. Kolb, S. Matarrese and A. Riotto, On cosmological observables in a swiss-cheese universe, Phys. Rev. D 76 (2007) 123004 [arXiv:0708.3622] [SPIRES].

    ADS  Google Scholar 

  42. G. Lavaux and B.D. Wandelt, Precision cosmology with voids: definition, methods, dynamics, arXiv:0906.4101 [SPIRES].

  43. S.K. Blau, E.I. Guendelman and A.H. Guth, The dynamics of false Vacuum bubbles, Phys. Rev. D 35 (1987) 1747 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [SPIRES].

    ADS  Google Scholar 

  45. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [SPIRES].

    ADS  Google Scholar 

  46. K.-M. Lee and E.J. Weinberg, Tunneling without barriers, Nucl. Phys. B 267 (1986) 181 [SPIRES].

    Article  ADS  Google Scholar 

  47. WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  48. J. Garriga and A. Pomarol, A stable hierarchy from Casimir forces and the holographic interpretation, Phys. Lett. B 560 (2003) 91 [hep-th/0212227] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Sundrum.

Additional information

ArXiv ePrint: 0909.3254

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundrum, R., Wells, C.M. Warped hybrid inflation. J. High Energ. Phys. 2010, 97 (2010). https://doi.org/10.1007/JHEP02(2010)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)097

Keywords

Navigation