Skip to main content
Log in

Classical and quantum equations of motion for a BTZ black string in AdS space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate gravitational collapse of a (3+1)-dimensional BTZ black string in AdS space in the context of both classical and quantum mechanics. This is done by first deriving the conserved mass per unit length of the cylindrically symmetric domain wall, which is taken as the classical Hamiltonian of the black string. In the quantum mechanical context, we take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning that the horizon is not an obstacle for him/her. The most interesting quantum mechanical effect comes in when investigating near the origin. First, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Second, the Schrödinger equation describing the behavior near the origin displays non-local effects, which depend on the energy density of the domain wall. This is manifest in that derivatives of the wavefunction at one point are related to the value of the wavefunction at some other distant point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking and R. Penrose, The nature of space and time, Princeton University Press, Princeton U.S.A. (1996).

    MATH  Google Scholar 

  2. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. VachasPati and D. Stojkovic, Quantum radiation from quantum gravitational collapse, Phys. Lett. B 663 (2008) 107 [gr-qc/0701096] [SPIRES].

    ADS  Google Scholar 

  4. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [SPIRES].

  6. T.A. Madhav, R. Goswami and P.S. Joshi, Gravitational collapse in asymptotically Anti-de Sitter/de Sitter backgrounds, Phys. Rev. D 72 (2005) 084029 [gr-qc/0502081] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. S.S. Deshingkar, A. Chamorro, S. Jhingan and P.S. Joshi, Gravitational collapse and cosmological constant, Phys. Rev. D 63 (2001) 124005 [gr-qc/0010027] [SPIRES].

    ADS  Google Scholar 

  8. A. Eid, Radiating shell supported by a phantom energy, Electron. J. Theor. Phys. 19 (2008) 115.

    Google Scholar 

  9. J. Ipser and P. Sikivie, The gravitationally repulsive domain wall, Phys. Rev. D 30 (1984) 712 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, New York U.S.A. (1973).

    Google Scholar 

  11. S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison Wesley, U.S.A. (2004).

    MATH  Google Scholar 

  12. J. Crisostomo and R. Olea, Hamiltonian treatment of the gravitational collapse of thin shells, Phys. Rev. D 69 (2004) 104023 [hep-th/0311054] [SPIRES].

    ADS  Google Scholar 

  13. H. Chao-Guang, Charged static cylindrical black hole, Acta Phys. Sin. 44 (1995) 671.

    Google Scholar 

  14. E. Greenwood and D. Stojkovic, Quantum gravitational collapse: non-singularity and nonlocality, JHEP 06 (2008) 042 [arXiv:0802.4087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. J.P.M. Pitelli and P.S. Letelier, Quantum singularities in the BTZ spacetime, Phys. Rev. D 77 (2008) 124030 [arXiv:0805.3926] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. J.E. Wang, E. Greenwood and D. Stojkovic, Schrödinger formalism, black hole horizons and singularity behavior, Phys. Rev. D 80 (2009) 124027 [arXiv:0906.3250] [SPIRES].

    Google Scholar 

  19. E.A. Minassian, Spacetime singularities in (2 + 1)-dimensional quantum gravity, Class. Quant. Grav. 19 (2002) 5877 [gr-qc/0203026] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Greenwood.

Additional information

ArXiv ePrint: 0912.1860

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwood, E., Halstead, E. & Hao, P. Classical and quantum equations of motion for a BTZ black string in AdS space. J. High Energ. Phys. 2010, 44 (2010). https://doi.org/10.1007/JHEP02(2010)044

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)044

Keywords

Navigation