Skip to main content
Log in

Bosonic fractionalisation transitions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

At finite density, charge in holographic systems can be sourced either by explicit matter sources in the bulk or by bulk horizons. In this paper we find bosonic solutions of both types, breaking a global U(1) symmetry in the former case and leaving it unbroken in the latter. Using a minimal bottom-up model we exhibit phase transitions between the two cases, under the influence of a relevant operator in the dual field theory. We also embed solutions and transitions of this type in M-theory, where, holding the theory at constant chemical potential, the cohesive phase is connected to a neutral phase of Schrödinger type, via a z = 2 QCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D 84 (2011) 026001 [arXiv:1104.5022] [INSPIRE].

    ADS  Google Scholar 

  3. N. Iqbal and H. Liu, Luttingers Theorem, Superfluid Vortices and Holography, Class. Quant. Grav. 29 (2012) 194004 [arXiv:1112.3671] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, arXiv:1207.4208 [INSPIRE].

  5. V.G.M. Puletti, S. Nowling, L. Thorlacius and T. Zingg, Holographic metals at finite temperature, JHEP 01 (2011) 117 [arXiv:1011.6261] [INSPIRE].

    Article  ADS  Google Scholar 

  6. E. D’Hoker and P. Kraus, Charge Expulsion from Black Brane Horizons and Holographic Quantum Criticality in the Plane, JHEP 09 (2012) 105 [arXiv:1202.2085] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].

    ADS  Google Scholar 

  11. S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

    ADS  Google Scholar 

  13. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

    Article  Google Scholar 

  14. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

    Article  Google Scholar 

  15. O. DeWolfe, S.S. Gubser and C. Rosen, A holographic critical point, Phys. Rev. D 83 (2011) 086005 [arXiv:1012.1864] [INSPIRE].

    ADS  Google Scholar 

  16. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  17. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  22. B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  23. X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau Model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [INSPIRE].

    ADS  Google Scholar 

  25. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A Theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].

  26. G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  28. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H.-C. Kim, S. Kim, K. Lee and J. Park, Emergent Schrödinger geometries from mass-deformed CFT, JHEP 08 (2011) 111 [arXiv:1106.4309] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E. O Colgain, O. Varela and H. Yavartanoo, Non-relativistic M-theory solutions based on Kähler-Einstein spaces, JHEP 07 (2009) 081 [arXiv:0906.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  37. N. Iqbal, H. Liu and M. Mezei, Quantum phase transitions in semi-local quantum liquids, arXiv:1108.0425 [INSPIRE].

  38. S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz Horizons, arXiv:1202.6635 [INSPIRE].

  39. J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, arXiv:1208.1752 [INSPIRE].

  40. N. Kundu, P. Narayan, N. Sircar and S.P. Trivedi, Entangled Dilaton Dyons, arXiv:1208.2008 [INSPIRE].

  41. G.T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].

    ADS  Google Scholar 

  42. N. Bao, X. Dong, S. Harrison and E. Silverstein, The Benefits of Stress: Resolution of the Lifshitz Singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Sonner.

Additional information

ArXiv ePrint: 1208.3199

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, A., Crampton, B., Sonner, J. et al. Bosonic fractionalisation transitions. J. High Energ. Phys. 2013, 127 (2013). https://doi.org/10.1007/JHEP01(2013)127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)127

Keywords

Navigation