Skip to main content
Log in

Refined black hole ensembles and topological strings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We formulate a refined version of the Ooguri-Strominger-Vafa (OSV) conjecture. The OSV conjecture that Z BH = |Z top |2 relates the BPS black hole partition function to the topological string partition function Z top. In the refined conjecture, Z BH is the partition function of BPS black holes counted with spin, or more precisely the protected spin character. Z top becomes the partition function of the refined topological string, which is itself an index. Both the original and the refined conjecture are examples of large N duality in the ’t Hooft sense. The refined conjecture applies to non-compact Calabi-Yau manifolds only, so the black holes are really BPS particles with large entropy, of order N 2. The refined OSV conjecture states that the refined BPS partition function has a large N dual which is captured by the refined topological string. We provide evidence that the conjecture holds by studying local Calabi-Yau threefolds consisting of line bundles over a genus g Riemann surface. We show that the refined topological string partition function on these geometries is computed by a two-dimensional TQFT. We also study the refined black hole partition function arising from N D4 branes on the Calabi-Yau, and argue that it reduces to a (q, t)-deformed version of two-dimensional SU(N ) Yang-Mills. Finally, we show that in the large N limit this theory factorizes to the square of the refined topological string in accordance with the refined OSV conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058 [INSPIRE].

  3. M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. C. Beasley et al., Why Z BH = |Z top|2, hep-th/0608021 [INSPIRE].

  7. A. Sen, Entropy Function and AdS 2 /CF T 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Sen, Quantum Entropy Function from AdS 2 /CF T 1 Correspondence, Int. J. Mod. Phys. A 24 (2009)4225 [arXiv:0809.3304] [INSPIRE].

    ADS  Google Scholar 

  9. A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, arXiv:1108.3842 [INSPIRE].

  11. A. Dabholkar, J. Gomes and S. Murthy, Localization and Exact Holography, arXiv:1111.1161 [INSPIRE].

  12. C. Vafa, Supersymmetric Partition Functions and a String Theory in 4 Dimensions, arXiv:1209.2425 [INSPIRE].

  13. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  14. T. Dimofte, S. Gukov and Y. Soibelman, Quantum Wall Crossing in N = 2 Gauge Theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. T. Dimofte and S. Gukov, Refined, Motivic and Quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Cecotti and C. Vafa, BPS Wall Crossing and Topological Strings, arXiv:0910.2615 [INSPIRE].

  17. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, arXiv:1006.0146 [INSPIRE].

  18. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, JHEP 01 (2012) 115 [arXiv:1008.0030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Bound state transformation walls, JHEP 03 (2012) 007 [arXiv:1008.3555] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. T.J. Hollowood, A. Iqbal and C. Vafa, Matrix models, geometric engineering and elliptic genera, JHEP 03 (2008) 069 [hep-th/0310272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Iqbal, C. Kozcaz and C. Vafa, The Refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, JHEP 04 (2008) 011 [hep-th/0312022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Dijkgraaf, C. Vafa and E. Verlinde, M-theory and a topological string duality, hep-th/0602087 [INSPIRE].

  25. R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [INSPIRE].

  26. M.C. Cheng, R. Dijkgraaf and C. Vafa, Non-Perturbative Topological Strings And Conformal Blocks, JHEP 09 (2011) 022 [arXiv:1010.4573] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].

    Article  ADS  Google Scholar 

  28. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. M. Aganagic, D. Jafferis and N. Saulina, Branes, black holes and topological strings on toric Calabi-Yau manifolds, JHEP 12 (2006) 018 [hep-th/0512245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Exact and asymptotic degeneracies of small black holes, JHEP 08 (2005) 021 [hep-th/0502157] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes, JHEP 10 (2005) 096 [hep-th/0507014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Shih and X. Yin, Exact black hole degeneracies and the topological string, JHEP 04 (2006)034 [hep-th/0508174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Aganagic, H. Ooguri and T. Okuda, Quantum Entanglement of Baby Universes, Nucl. Phys. B 778 (2007) 36 [hep-th/0612067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. E.P. Verlinde, Attractors and the holomorphic anomaly, hep-th/0412139 [INSPIRE].

  36. E. Witten, Fivebranes and Knots, arXiv:1101.3216 [INSPIRE].

  37. M. Aganagic and S. Shakirov, Knot Homology from Refined Chern-Simons Theory, arXiv:1105.5117 [INSPIRE].

  38. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, arXiv:1110.3740 [INSPIRE].

  39. M. Aganagic and K. Schaeffer, Orientifolds and the Refined Topological String, JHEP 09 (2012)084 [arXiv:1202.4456] [INSPIRE].

    Article  ADS  Google Scholar 

  40. K. Yoshioka, Betti numbers of moduli of stable sheaves on sime surfaces, Nucl. Phys. Proc. Suppl. 46 (1996) 263 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. H. Nakajima and K. Yoshioka, Lectures on instanton counting, math/0311058 [INSPIRE].

  42. T. Nishinaka and S. Yamaguchi, Wall-crossing of D4-D2-D0 and flop of the conifold, JHEP 09 (2010) 026 [arXiv:1007.2731] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. T. Nishinaka, Multiple D4-D2-D0 on the Conifold and Wall-crossing with the Flop, JHEP 06 (2011)065 [arXiv:1010.6002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. E. Witten, Quantum background independence in string theory, hep-th/9306122 [INSPIRE].

  46. M. Aganagic, A. Neitzke and C. Vafa, BPS microstates and the open topological string wave function, Adv. Theor. Math. Phys. 10 (2006) 603 [hep-th/0504054] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  47. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  48. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].

  49. K. Saraikin and C. Vafa, Non-supersymmetric black holes and topological strings, Class. Quant. Grav. 25 (2008) 095007 [hep-th/0703214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. N. Nekrasov, H. Ooguri and C. Vafa, S duality and topological strings, JHEP 10 (2004) 009 [hep-th/0403167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory, Lett. Math. Phys. 95 (2011) 67 [arXiv:1007.0263] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. D. Krefl and J. Walcher, Shift versus Extension in Refined Partition Functions, arXiv:1010.2635 [INSPIRE].

  53. M.-x. Huang, A.-K. Kashani-Poor and A. Klemm, The Omega deformed B-model for rigid N =2 theories,arXiv:1109.5728[INSPIRE].

  54. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. M. Aganagic and S. Shakirov, Refined Chern-Simons Theory and Topological String, arXiv:1210.2733 [INSPIRE].

  56. M. Aganagic and S. Shakirov, Refined Chern-Simons Theory and Topological String, arXiv:1210.2733 [INSPIRE].

  57. I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, Oxford, U.K. (1995).

    Google Scholar 

  58. H. Awata and H. Kanno, Refined BPS state counting from Nekrasovs formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. A. Morrison, S. Mozgovoy, K. Nagao and B. Szendroi, Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex, arXiv:1107.5017 [INSPIRE].

  60. S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. W.-y. Chuang, D.-E. Diaconescu and G. Pan, Wallcrossing and Cohomology of The Moduli Space of Hitchin Pairs, Commun. Num. Theor. Phys. 5 (2011) 1 [arXiv:1004.4195] [INSPIRE].

    Google Scholar 

  62. W. Chuang, D. Diaconescu and G. Pan, BPS states and the P=W conjecture, arXiv:1202.2039 [INSPIRE].

  63. M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996)420 [hep-th/9511222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. E. Diaconescu and G.W. Moore, Crossing the wall: Branes versus bundles, Adv. Theor. Math. Phys. 14 (2010) [arXiv:0706.3193] [INSPIRE].

  66. M. Aganagic and S. Shakirov, Refined Chern-Simons Theory and Knot Homology, arXiv:1202.2489 [INSPIRE].

  67. M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. I. Cherednik, Difference Macdonald-Mehta Conjecture, q-alg/9702022 (1997).

  69. I. Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series 39, Cambridge University Press, Cambridge, U.K. (2005).

    Google Scholar 

  70. I. Cherednik, Double Affine Hecke Algebras and Difference Fourier Transforms, math/0110024.

  71. D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993)181 [hep-th/9301068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. K. Schaeffer, Baby Universes in Refined Topological String Theory, work in progress.

  73. D.L. Jafferis and G.W. Moore, Wall crossing in local Calabi Yau manifolds, arXiv:0810.4909 [INSPIRE].

  74. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  75. R. Gopakumar and C. Vafa, M theory and topological strings. 1., hep-th/9809187 [INSPIRE].

  76. R. Gopakumar and C. Vafa, M theory and topological strings. 2., hep-th/9812127 [INSPIRE].

  77. M. Aganagic, H. Ooguri, C. Vafa and M. Yamazaki, Wall Crossing and M-theory, Publ. Res. Inst. Math. Sci. Kyoto 47 (2011) 569 [arXiv:0908.1194] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Aganagic and M. Yamazaki, Open BPS Wall Crossing and M-theory, Nucl. Phys. B 834 (2010)258 [arXiv:0911.5342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Aganagic.

Additional information

ArXiv ePrint: 1210.1865

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aganagic, M., Schaeffer, K. Refined black hole ensembles and topological strings. J. High Energ. Phys. 2013, 60 (2013). https://doi.org/10.1007/JHEP01(2013)060

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)060

Keywords

Navigation