Skip to main content
Log in

Spin before mass at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

What can be said about the spin of new particles without knowing their mass during an initial discovery phase at CERN? We consider this question in a topology where mass measurement is particularly difficult, \( pp \to Y\overline Y \to lX\overline l { }\overline X \), and introduce two new variables cos θ V and \( \mathcal{A}_{{ll}}^V \) which we prove are both independent of the mass of X. The variable cos θ V approximates the polar production angle of Y, and we find that it possesses greater statistical power in determining the spin of this particle than a previous, related variable, cos θ ll [1]. \( \mathcal{A}_{{ll}}^V \) is an asymmetry which can provide information about the couplings of a spin half Y. Because these variables can be used from the outset, without any knowledge of the masses of the new particles, we find here that it is possible to reverse the usual ‘mass before spin’ determination timeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barr, Measuring slepton spin at the LHC, JHEP 02 (2006) 042 [hep-ph/0511115] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].

    ADS  Google Scholar 

  3. P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner mass measurement technique using 1D orthogonal decompositions of the Cambridge transverse mass variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [INSPIRE].

    Article  ADS  Google Scholar 

  4. C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

    ADS  Google Scholar 

  5. A. Barr, C. Lester and P. Stephens, m(T2): the truth behind the glamour, J. Phys. G G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

    Article  ADS  Google Scholar 

  6. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Datta, G.L. Kane and M. Toharia, Is it SUSY?, hep-ph/0510204 [INSPIRE].

  8. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, M(T2)-assisted on-shell reconstruction of missing momenta and its application to spin measurement at the LHC, Phys. Rev. D 79 (2009) 031701 [arXiv:0810.4853] [INSPIRE].

    ADS  Google Scholar 

  9. H.-C. Cheng, Z. Han, I.-W. Kim and L.-T. Wang, Missing momentum reconstruction and spin measurements at hadron colliders, JHEP 11 (2010) 122 [arXiv:1008.0405] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Horton, Reconstructing events with missing transverse momentum at the LHC and its application to spin measurement, arXiv:1006.0148 [INSPIRE].

  11. C.-Y. Chen and A. Freitas, General analysis of signals with two leptons and missing energy at the Large Hadron Collider, JHEP 02 (2011) 002 [arXiv:1011.5276] [INSPIRE].

    ADS  Google Scholar 

  12. G. Moortgat-Pick, K. Rolbiecki and J. Tattersall, Early spin determination at the LHC?, Phys. Lett. B 699 (2011) 158 [arXiv:1102.0293] [INSPIRE].

    ADS  Google Scholar 

  13. M.R. Buckley, S.Y. Choi, K. Mawatari and H. Murayama, Determining spin through quantum azimuthal-angle correlations, Phys. Lett. B 672 (2009) 275 [arXiv:0811.3030] [INSPIRE].

    ADS  Google Scholar 

  14. M. Battaglia, A. Datta, A. De Roeck, K. Kong and K.T. Matchev, Contrasting supersymmetry and universal extra dimensions at the CLIC multi-TeV e + e collider, JHEP 07 (2005) 033 [hep-ph/0502041] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.J. Barr, G.G. Ross and M. Serna, The precision determination of invisible-particle masses at the LHC, Phys. Rev. D 78 (2008) 056006 [arXiv:0806.3224] [INSPIRE].

    ADS  Google Scholar 

  17. T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].

    Article  ADS  Google Scholar 

  18. http://www-thphys.physics.ox.ac.uk/people/TomMelia/tommelia.html.

  19. C.G. Lester, M.A. Parker and M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables, JHEP 01 (2006) 080 [hep-ph/0508143] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Kullback and R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1951) 79.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Melia.

Additional information

ArXiv ePrint: 1110.6185

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melia, T. Spin before mass at the LHC. J. High Energ. Phys. 2012, 143 (2012). https://doi.org/10.1007/JHEP01(2012)143

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)143

Keywords

Navigation