Skip to main content
Log in

Coherence effects and broadening in medium-induced QCD radiation off a massive \( q\bar{q} \) antenna

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Studies of medium-induced QCD radiation usually rely on the calculation of single-gluon radiation spectrum off an energetic parton traversing an extended colored medium. Recently, the importance of interference effects between emitters in the medium has been explored. In this work we extend previous studies by calculating the single-gluon coherent spectrum off an antenna consisting of a massive quark-antiquark pair. Interferences dominate the spectrum of soft gluons, which are mainly emitted outside of the cone made by the antenna opening angle, while the antenna results in a superposition of independent emitters above a critical gluon energy scale. We study the interplay between the dead-cone effect and medium-induced jet broadening in both cases of soft and hard gluons and present results on energy loss distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  2. B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

    ADS  Google Scholar 

  3. BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].

    ADS  Google Scholar 

  4. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  5. PHENIX collaboration, A. Adare et al., Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) and constraints on medium transport coefficients, Phys. Rev. Lett. 101 (2008) 232301 [arXiv:0801.4020] [INSPIRE].

    Article  ADS  Google Scholar 

  6. ALICE collaboration, K. Aamodt, Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 2.76{ }TeV \), Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [INSPIRE].

    ADS  Google Scholar 

  7. STAR collaboration, J. Adams et al., Direct observation of dijets in central Au+Au collisions at \( \sqrt {{{s_{{N\,N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 97 (2006) 162301 [nucl-ex/0604018] [INSPIRE].

    Article  ADS  Google Scholar 

  8. STAR collaboration, B. Abelev et al., Transverse momentum and centrality dependence of high-p T non-photonic electron suppression in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 98 (2007) 192301 [Erratum ibid. 106 (2011) 159902] [nucl-ex/0607012] [INSPIRE].

    Article  ADS  Google Scholar 

  9. PHENIX collaboration, A. Adare et al., Energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \), Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Dainese, Heavy-flavour production in Pb-Pb collisions at the LHC, measured with the ALICE detector, J. Phys. G 38 (2011) 124032 [arXiv:1106.4042] [INSPIRE].

    ADS  Google Scholar 

  11. STAR collaboration, J. Putschke, First fragmentation function measurements from full jet reconstruction in heavy-ion collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) by STAR, Eur. Phys. J. C 61 (2009) 629 [arXiv:0809.1419] [INSPIRE].

    Article  ADS  Google Scholar 

  12. STAR collaboration, S. Salur, First direct measurement of jets in \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) heavy ion collisions by STAR, Eur. Phys. J. C 61 (2009) 761 [arXiv:0809.1609] [INSPIRE].

    Article  ADS  Google Scholar 

  13. STAR collaboration, E. Bruna, Measurements of jet structure and fragmentation from full jet reconstruction in heavy ion collisions at RHIC, Nucl. Phys. A 830 (2009) 267C [arXiv:0907.4788] [INSPIRE].

  14. STAR collaboration, M. Ploskon, Inclusive cross section and correlations of fully reconstructed jets in \( \sqrt {{{s_{{N{ }N}}}}} = 200{ }GeV \) Au+Au and p+p collisions, Nucl. Phys. A 830 (2009) 255C [arXiv:0908.1799] [INSPIRE].

    ADS  Google Scholar 

  15. ATLAS collaboration, G. Aad et al., Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt {{{s_{{N{ }N}}}}} = 2.76{ }TeV \) with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].

    Article  ADS  Google Scholar 

  16. CMS collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in Pb-Pb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].

    ADS  Google Scholar 

  17. I. Lokhtin, L. Sarycheva, A. Snigirev and K. Teplov, Medium-modified fragmentation of b-jets tagged by a leading muon in ultrarelativistic heavy ion collisions, Eur. Phys. J. C 37 (2004) 465 [hep-ph/0407109] [INSPIRE].

    Article  ADS  Google Scholar 

  18. N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Testing the color charge and mass dependence of parton energy loss with heavy-to-light ratios at RHIC and CERN LHC, Phys. Rev. D 71 (2005) 054027 [hep-ph/0501225] [INSPIRE].

    ADS  Google Scholar 

  19. J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].

    ADS  Google Scholar 

  20. D. d’Enterria, Jet quenching, arXiv:0902.2011 [INSPIRE].

  21. U.A. Wiedemann, Jet quenching in heavy ion collisions, arXiv:0908.2306 [INSPIRE].

  22. A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. A 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Armesto, M. Cacciari, T. Hirano, J.L. Nagle and C.A. Salgado, Constraint fitting of experimental data with a jet quenching model embedded in a hydrodynamical bulk medium, J. Phys. G 37 (2010) 025104 [arXiv:0907.0667] [INSPIRE].

    ADS  Google Scholar 

  24. Y.L. Dokshitzer, V.A. Khoze and S. Troian, Particle spectra in light and heavy quark jets, J. Phys. G 17 (1991) 1481 [INSPIRE].

    ADS  Google Scholar 

  25. Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics of perturbative QCD, Editions Frontières, Gif-sur-Yvette France (1991)

    Google Scholar 

  26. N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].

    ADS  Google Scholar 

  27. M. Djordjevic and M. Gyulassy, Heavy quark radiative energy loss in QCD matter, Nucl. Phys. A 733 (2004) 265 [nucl-th/0310076] [INSPIRE].

    ADS  Google Scholar 

  28. B.-W. Zhang, E. Wang and X.-N. Wang, Heavy quark energy loss in nuclear medium, Phys. Rev. Lett. 93 (2004) 072301 [nucl-th/0309040] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].

    Article  ADS  Google Scholar 

  30. Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].

    ADS  Google Scholar 

  31. Y. Mehtar-Tani and K. Tywoniuk, Jet coherence in QCD media: the antenna radiation spectrum, arXiv:1105.1346 [INSPIRE].

  32. J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].

    Article  ADS  Google Scholar 

  33. U.A. Wiedemann, Transverse dynamics of hard partons in nuclear media and the QCD dipole, Nucl. Phys. B 582 (2000) 409 [hep-ph/0003021] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

    ADS  Google Scholar 

  36. N. Armesto, L. Cunqueiro, C.A. Salgado and W.-C. Xiang, Medium-evolved fragmentation functions, JHEP 02 (2008) 048 [arXiv:0710.3073] [INSPIRE].

    Article  ADS  Google Scholar 

  37. N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  38. U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C.A. Salgado and U.A. Wiedemann, Medium modification of jet shapes and jet multiplicities, Phys. Rev. Lett. 93 (2004) 042301 [hep-ph/0310079] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, On the angular dependence of the radiative gluon spectrum, Phys. Rev. C 64 (2001) 057902 [hep-ph/0105062] [INSPIRE].

    ADS  Google Scholar 

  41. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  42. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Landau Institute for Theoretical Physics, Moscow collaboration, B. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  44. LPTHE, Univ. de Paris-Sud, Orsay and Landau Institute for Theoretical Physics, Moscow collaborations, B. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Gyulassy, P. Levai and I. Vitev, Non-Abelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ma.

Additional information

ArXiv ePrint: 1110.4343

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armesto, N., Ma, H., Mehtar-Tani, Y. et al. Coherence effects and broadening in medium-induced QCD radiation off a massive \( q\bar{q} \) antenna. J. High Energ. Phys. 2012, 109 (2012). https://doi.org/10.1007/JHEP01(2012)109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)109

Keywords

Navigation