Skip to main content
Log in

Vesicle production and fusion during lobe formation inMicrasterias visualized by high-pressure freeze fixation

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Two different types of Golgi vesicles involved in wall formation can be visualized during lobe growth inMicrasterias when using high-pressure freeze fixation followed by freeze substitution. One type that corresponds to the “dark vesicles” (DV) described in literature seems to arise by a developmental process occurring at the Golgi bodies with the single vesicles being forwarded from one cisterna to the next. The other vesicle type appears to be produced at thetrans Golgi network without any visible precursors at the Golgi cisternae. A third type of vesicle, produced by median andtrans cisternae, contains slime; these are considerably larger than those previously mentioned and they do not participate in wall formation. The distribution of the two types of cell wall vesicles at the cell periphery and their fusion with the plasma membrane are shown for the first time, since chemical fixation is too slow to preserve a sufficient number of vesicles in the cortical cytoplasm. The results indicate that fusions of both types of vesicles with the plasma membrane are possible all over the entire surface of the growing half cell. However, the DVs are much more concentrated at the growing lobes, where they form queues several vesicles deep behind zones on the plasma membrane thought to be specific fusion sites. The structural observations reveal that the regions of enhanced vesicle fusion correspond in general to the sites of calcium accumulation determined in earlier studies. By virtue of the absence of the DVs in the region of cell wall indentations the second type of wall forming vesicle appears prominent; they too fuse with the plasma membrane and discharge their contents to the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustine GJ, Charlton MP, Smith SS (1987) Calcium action in synaptic transmitter release. Annu Rev Neurosci 10: 663–693

    Google Scholar 

  • Bakker ME, Lokhorst GM (1987) Ultrastructure of mitosis and cytokinesis inZygnema sp. (Zygnematales, Chlorophyta). Protoplasma 138: 105–118

    Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure ofNicotiana alata pollen, its germination and early tube formation. Am J Bot 72: 719–727

    Google Scholar 

  • Cresti M, Milanesi C, Salvatici P, van Aelst AC (1990) Ultrastructural observations ofPapaver rhoeas mature pollen grains. Bot Acta 103: 349–354

    Google Scholar 

  • Dahl R, Staehelin LA (1989) High-pressure freezing for preservation of biological structure: theory and practice. J Electron Microsc Tech 13: 165–174

    PubMed  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992) Effect of high pressure freezing on plant microfilament bundles. J Microsc 165: 367–376

    Google Scholar 

  • Gonzales-Reyes JA, Garcia-Navarro F, Garcia-Herdugo G, Naves P (1988) Changes of dictyosome ultrastructure during the cell cycle in onion root meristematic cells. A morphometric and stereological study. Protoplasma 146: 35–40

    Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 401–516

    Google Scholar 

  • Harold FM (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54: 381–431

    PubMed  Google Scholar 

  • Heath IB, Kaminskyj SGW (1989) The organization of tip-growth-related organelles and microtubules revealed by quantitative analysis of freeze-substituted oomycete hyphae. J Cell Sci 93: 41–52

    Google Scholar 

  • Heath IB, Rethoret K, Arsenault AL, Ottensmeyer FP (1985) Improved preservation of the form and the contents of wall vesicles and the golgi apparatus in freeze substituted hyphae ofSaprolegnia. Protoplasma 128: 81–93

    Google Scholar 

  • Hillmer S, Freundt H, Robinson DG (1988) The partially coated reticulum and its relationship to the Golgi apparatus in higher plant cells. Eur J Cell Biol 47: 206–212

    Google Scholar 

  • Hoch HC, Howard RJ (1980) Ultrastructure of freeze-substituted hyphae of the basidiomyceteLaetisaria arvalis. Protoplasma 103: 281–297

    Google Scholar 

  • Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48: 89–103

    PubMed  Google Scholar 

  • Kiermayer O (1970) Elektronenmikroskopische Untersuchungen zum Problem der Cytomorphogenese vonMicrasterias denticulata Breb. Protoplasma 69: 97–132

    Google Scholar 

  • — (1981) Cytoplasmic basis of morphogenesis inMicrasterias. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 147–189 [Alfert M et al (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • —, Fedtke C (1977) Strong anti-microtubule action of amiprophosmethyl (APM) inMicrasterias. Protoplasma 92: 163–166

    Google Scholar 

  • —, Meindl U (1984) Interaction of the golgi-apparatus and the plasmalemma in the Cytomorphogenesis inMicrasterias. In: Wiessner W, Robinson D, Starr RC (eds) Compartments in algal cells and their interaction. Springer, Berlin Heidelberg New York Tokyo, pp 175–182

    Google Scholar 

  • — — (1989) Cellular morphogenesis: the desmid (Chlorophyceae) system. In: Coleman AW, Goff LJ, Stein-Taylor JR (eds) Algae as experimental systems. AR Liss, New York, pp 149–167

    Google Scholar 

  • Kiss JZ, Giddings TH, JR, Staehelin LA, Sack FD (1990) Comparision of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips ofNicotiana andArabidopsis. Protoplasma 157: 64–74

    PubMed  Google Scholar 

  • Kristen U (1978) Ultrastructure and a possible function of the intercisternal elements in dictyosomes. Planta 138: 29–33

    Google Scholar 

  • Lancelle SA, Hepler PK (1988) Cytochalasin-induced ultrastructural alterations inNicotiana pollen tubes. Protoplasma [Suppl] 2: 65–75

    Google Scholar 

  • — — (1989) Immunogold labelling of actin on sections of freezesubstituted plant cells. Protoplasma 150: 72–74

    Google Scholar 

  • — — (1992) Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • —, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131: 153–165

    Google Scholar 

  • Lehtonen J (1983) Action of cytochalasin B on cytoplasmic streaming and morphogenesis inMicrasterias torreyi (Conjugatophyceae). Nord J Bot 3: 521–531

    Google Scholar 

  • Lichtscheidl IK, Lancelle SA, Hepler PK (1990) Actin-endoplasmic reticulum complexes inDrosera. Their structural relationship with the plasmalemma, the nucleus and organelles in cells prepared by high pressure freezing. Protoplasma 155: 116–126

    Google Scholar 

  • Lokhorst GH, Segaar PJ (1989) Ultrastructure of zoosporogenesis in the algaBotrydiopsis alpina (Triophyceae), as revealed by cryofixation and freeze substitution. Eur J Protistol 24: 260–270

    Google Scholar 

  • Meindl U (1982) Local accumulation of membrane-associated calcium according to cell pattern formation inMicrasterias denticulata, visualized by chlorotetracycline fluorescence. Protoplasma 110: 143–146

    Google Scholar 

  • — (1992) Cytoskeleton-based nuclear translocation in desmids. In: Menzel D (ed) Cytokeleton of the algae. CRC Press, Boca Raton, pp 133–147

    Google Scholar 

  • Menge U (1976) Ultracytochemische Untersuchungen anMicrasterias denticulata Breb. Protoplasma 88: 287–303

    Google Scholar 

  • —, Kiermayer O (1977 a) Dictyosomen vonMicrasterias denticulata Breb.—ihre Größenveränderung während des Zellzyklus. Protoplasma 91: 115–123

    Google Scholar 

  • — (1977 b) Beobachtungen zur Struktur der Dictyosomen vonMicrasterias denticulata Breb. Mikroskopie 33: 168–176

    PubMed  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK (1992) Free Ca2+ gradients in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    Google Scholar 

  • Mollenhauer HH, Morré DJ (1975) A possible role for intercisternal elements in the formation of secretory vesicles in plant Golgi apparatus. J Cell Sci 19: 231–137

    PubMed  Google Scholar 

  • — —, Griffing LR (1991) Post Golgi apparatus structures and membrane removal in plants. Protoplasma 162: 55–60

    Google Scholar 

  • Noguchi T (1978) Transformation of the Golgi apparatus in the cell cycle, especially at the resting and earliest developmental stages of a green alga,Micrasterias americana. Protoplasma 95: 73–88

    Google Scholar 

  • —, Ueda K (1988) Cortical microtubules and cortical microfilaments in the green alga,Micrasterias pinnatifida. Protoplasma 143: 188–192

    Google Scholar 

  • Picton JM, Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    PubMed  Google Scholar 

  • Roberson RW, Fuller MS (1988) Ultrastructural aspects of the hyphal tip ofSclerotium rolfsii preserved by freeze substitution. Protoplasma 146: 143–149

    Google Scholar 

  • Schlösser UG (1982) List of strains. Ber Deutsch Bot Ges 95: 181–206

    Google Scholar 

  • Sluiman HJ, Lokhorst GM (1988) The ultrastructure of cellular division (Autosporogenesis) in the coccoid green alga,Trebouxia aggregata, revealed by rapid freeze fixation and freeze substitution. Protoplasma 144: 149–159

    Google Scholar 

  • Staehelin LA, Giddings TH, JR, Kiss JZ, Sack FD (1990) Macromolecular differentiation of Golgi stacks in root tips ofArabidopsis andNicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157: 75–91

    PubMed  Google Scholar 

  • Steer MW (1988) The role of calcium in exocytosis and endocytosis in plant cells. Physiol Plant 72: 213–220

    Google Scholar 

  • —, O'Driscoll D (1991) Vesicle dynamics and membrane turnover in plant cells. In: Hawes C, Coleman J, Evans D (eds) Endocytosis, exocytosis and vesicle traffic in plants. Cambridge University Press, Cambridge, pp 129–142

    Google Scholar 

  • Tippit DH, Pickett-Heaps JD (1974) Experimental investigations into morphogenesis inMicrasterias. Protoplasma 81: 271–296

    Google Scholar 

  • Ueda K, Noguchi T (1976) Transformation of the Golgi apparatus in the cell cycle of a green alga,Micrasterias americana. Protoplasma 87: 145–162

    PubMed  Google Scholar 

  • — — (1988) Microfilament bundles of F-actin and cytomorphogenesis in the green algaMicrasterias crux-melitensis. Eur J Cell Biol 46: 61–67

    Google Scholar 

  • Whaley WG (1975) The Golgi apparatus. Springer, Wien New York [Alfert et al (eds) Cell biology monographs, vol 2]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindl, U., Lancelle, S. & Hepler, P.K. Vesicle production and fusion during lobe formation inMicrasterias visualized by high-pressure freeze fixation. Protoplasma 170, 104–114 (1992). https://doi.org/10.1007/BF01378786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01378786

Keywords

Navigation