Skip to main content

Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse

  • Chapter
  • First Online:
Stochastic Programming 84 Part I

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 27))

Abstract

Various approximation schemes for stochastic optimization problems involving either approximates of the probability measures and/or approximates of the objective functional, are investigated. We discuss their potential implementation as part of general procedures for solving stochastic programs with recourse.

Supported in part by grants of the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Attouch, Variational convergence for functions and operators, Research Notes in Mathematics (Pitman, London, to appear).

    Google Scholar 

  2. H. Attouch and R. Wets, ”Approximation and convergence in nonlinear optimization“, in: O. Managasarian, R. Meyer and S. Robinson, eds., Nonlinear Programming 4 (Academic Press, New York, 1981), pp. 367–394.

    Google Scholar 

  3. H. Attouch and R. Wets, ”A convergence theory for saddle functions“, Transactions of the American Mathematical Society 280 (1983) 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ben-Tal and E. Hochman, ”More bounds on the expectation of a random variable“, Journal of Applied Probability 9 (1972) 803–812.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Birge, ”Stochastic dynamic linear programs“, Ph.D Dissertation, Department of Operations Research, Stanford University (Stanford, CA, 1980).

    Google Scholar 

  6. J. Birge, ”The value of the stochastic solution in stochastic linear programs with fixed recourse“, Mathematical Programming 24 (1982) 314–325.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Birge and R. Wets, ”Approximation and error bounds in stochastic programming“, in: Y. Tong, ed., Inequalities in statistics and probability (Institute of Mathematical Statistics, Hayward, CA, 1984), pp. 178–186.

    Chapter  Google Scholar 

  8. A. Cabot, ”Variations on a cutting plane method, for solving concave minimization problems with linear constraints“, Naval Research Logistics Quarterly 21 (1974) 265–279.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Cipra, ”Class of unimodal distributions and its transformations“, Časopis pro Pěstování Matematiky 103 (1978) 17–26.

    MATH  MathSciNet  Google Scholar 

  10. G. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, 1963).

    MATH  Google Scholar 

  11. H. Don, ”Bounds on the expected value of a convex function in a sample-based class of probability measures“, IIASA notes (Laxenburg, Austria, 1983).

    Google Scholar 

  12. J. DupaČova, ”Minimax stochastic programs with nonconvex separable penalty, functions“, in: A. Prékopa, ed., Progress in operations research (North-Holland, Amsterdam, 1976) pp. 303–316.

    Google Scholar 

  13. J. DupaČová, ”Minimax approach to stochastic linear programming and the moment problem“, Zeitschrift für Angewandte Mathematik und Mechanik 58 (1978) 466–467.

    Google Scholar 

  14. J. DupaČová, ”The minimax approach to stochastic programming and an illustrative application“, Stochastics 11 (1984).

    Google Scholar 

  15. Y. Ermoliev, A. Gaivoronsky and C. Nedeva, ”Stochastic optimization problems with partially known distribution functions“, SIAM Journal on Control and Optimization, to appear.

    Google Scholar 

  16. V. Garcia-Palomares and A. Restuccia ”Global space quadratic algorithm for solving a system of mixed equalities and inequalities“, Mathematical Programming 21 (1981) 290–300.

    Article  MATH  MathSciNet  Google Scholar 

  17. H.I. Gassman and W.T. Ziemba, ”A tight upper bound for the expectation of a convex function of a multivariate random variable“, Mathematical Programming Study (1985), forthcoming.

    Google Scholar 

  18. D. Hausch and W. Ziemba, ”Bounds on the value of information in uncertain decision problems II“, Stochastics 10 (1983) 181–217.

    MATH  MathSciNet  Google Scholar 

  19. C. Huang, I. Vertinsky and W. Ziemba, ”Sharp bounds on the value of perfect information“, Operations Research 25 (1977) 315–325.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Huang, W. Ziemba and A. Ben-Tal, ”Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming“, Operations Research 25 (1977) 315–325.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Kall, Stochastic linear programming, (Springer-Verlag, Berlin, 1976).

    MATH  Google Scholar 

  22. P. Kall, ”Computational methods for solving two-stage stochastic linear programming problems“, Zeitschrift fuer Angewandte Mathematik und Physik 30 (1979) 261–271.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Kall and D. Stoyan, ”Solving stochastic programming problems with recourse including error bounds“, Mathematische Operationsforschung und Statistik Series Optimization 13 (1982) 431–447.

    MATH  MathSciNet  Google Scholar 

  24. P. Kall, Lecture at IIASA, Laxenburg, Austria, May 1983.

    Google Scholar 

  25. J. Kallberg, R. White and W. Ziemba, ”Short term financial planning under uncertainty“, Management Science 28 (1982) 670–682.

    Article  MATH  Google Scholar 

  26. A. karr, ”Extreme points of certain sets of probability measures, with applications“, Mathematics of Operations Research 8 (1983) 74–85.

    Article  MATH  MathSciNet  Google Scholar 

  27. J.H.B. Kemperman, ”On a class of moment problems“, in: L.M. Le Cam, J. Neyman, E.L. Scott, eds., 6th Berkeley symposium on mathematical statistics and probability, volume II: Probability theory (University of California Press, Berkeley-Los Angeles, 1972) 101–126.

    Google Scholar 

  28. M. Krein and A. Nudelman, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, 50. (American Mathematical Society, Providence, 1977).

    MATH  Google Scholar 

  29. M. Kusy and W. Ziemba, ”A bank asset and liability management model“, Collaborative Paper CP-83-59, IIASA (Laxenburg, Austria, 1983).

    Google Scholar 

  30. F. Louveaux and Y. Smeers, ”A stochastic model for electricity generation“ in: W. Haefele and L.K. Kirchmayer, eds., Modelling of large-scale energy systems, HASA Proceedings Series 12 (Pergamon, Oxford, 1981) pp. 313–320.

    Google Scholar 

  31. A. Madansky, ”Inequalities for stochastic linear programming problems“, Management Science 6 (1960) 197–204.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications (Academic Press, New York, 1979).

    MATH  Google Scholar 

  33. P. Olsen, ”Multistage stochastic programs with recourse: the equivalent deterministic problem“, SIAM Journal on Control and Optimization 14 (1976) 495–517.

    Article  MATH  MathSciNet  Google Scholar 

  34. P. Olsen, ”When is a multistage stochastic programming problem well defined?“, SIAM Journal on Control and Optimization 14 (1976) 518–527.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Perlman, ”Jensen’s inequality for a convex vector-valued function in an infinite dimensional space“, Journal of Multivariate Analysis 4 (1974) 52–65.

    Article  MATH  MathSciNet  Google Scholar 

  36. R.T. Rockafellar and R. Wets, ”Nonanticipativity and L 1-martingales in stochastic optimization problems“, Mathematical Programming Study 6 (1976) 170–187.

    MathSciNet  Google Scholar 

  37. R.T. Rockafellar and R. Wets, ”Stochastic convex programming: basic duality“, Pacific Journal of Mathematics 62 (1976) 173–195.

    MATH  MathSciNet  Google Scholar 

  38. R.T. Rockafellar and R. Wets, ”Stochastic convex programming: relatively complete recourse and induced feasibility“, SIAM Journal on Control and Optimization 14 (1976) 574–589.

    Article  MATH  MathSciNet  Google Scholar 

  39. R.T. Rockafellar and R. Wets, ”The, optimal recourse problem in discrete time: L 1-multipliers for inequality constraints“, SIAM Journal on Control and Optimization 16 (1978) 16–30.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Wang, ”Distribution sensitivity analysis for stochastic programs with recourse“, Mathematical Programming, to appear.

    Google Scholar 

  41. R. Wets, ”Stochastic programs with fixed recourse: The equivalent deterministic program“, SIAM Review 16 (1974) 309–339.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Wets, ”Solving stochastic programs with simple recourse II“, in: Proceedings of the 1975 conference on information sciences and systems (The Johns Hopkins University, Baltimore, 1975).

    Google Scholar 

  43. R. Wets, Grundlagen konvexer Optimierung, Lecture Notes in Economics and Mathematical Systems, 137 (Springer-Verlag, Berlin, 1976).

    MATH  Google Scholar 

  44. R. Wets, ”Convergence of convex functions, variational inequalities and complementary problems“, in: R. Cottle, F. Giannessi and J.-L. Lions, eds., Variational inequalities and complementary problems (J. Wiley and Sons, New York, 1980) pp. 375–403.

    Google Scholar 

  45. R. Wets, ”Stochastic programming: Solution techniques and approximation schemes“, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical programming: The state-of-the-art 1982 (Springer-Verlag, Berlin, 1983) pp. 566–603.

    Google Scholar 

  46. R. Wets, ”Modeling and solution strategies for unconstrained stochastic optimization problems“, Annals of Operations Research 1 (1984).

    Google Scholar 

  47. A. Williams, ”Approximation formulas for stochastic linear programming“, SIAM Journal on Applied Mathematics 14 (1966) 668–677.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. ŽáČková, ”On minimax solutions of stochastic linear programming problems“, Časopis pro Pěstování Mathematiky 91 (1966) 423–430.

    MATH  Google Scholar 

  49. W. Ziemba, ”Stochastic programs with simple recourse“, in: P. Hammer and G. Zoutendijk, eds., Mathematical programming in theory and practice (North-Holland, Amsterdam, 1974), pp. 213–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andras Prékopa Roger J.- B. Wets

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Birge, J.R., Wets, R.JB. (1986). Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. In: Prékopa, A., Wets, R.J.B. (eds) Stochastic Programming 84 Part I. Mathematical Programming Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121114

Download citation

  • DOI: https://doi.org/10.1007/BFb0121114

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00924-2

  • Online ISBN: 978-3-642-00925-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics