Skip to main content

Mathematical programming and the optimization of computer simulations

  • Chapter
  • First Online:
Engineering Optimization

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 11))

Abstract

Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables x i , i=1,…, n and yields responses η j , j=1,…, m. A simulation trial at a particular set of values x k i , i=1,…n produces an estimate y ki for the system response η j . This paper describes several formulations of the so-called “simulation/optimization” problem, including constrained optimization and multiple-objective optimization. It also describes several procedures for obtaining a solution to this problem, including a direct search technique, a first-order response surface method, and a second-order response surface approach. Each of these techniques combines simulation, response surface methodology, and mathematical programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E. Biles, “A gradient-regression search procedure for simulation experimentation”, Proceedings of the 1974 winter simulation conference, Washington, D.C. (1974) pp. 491–497.

    Google Scholar 

  2. W.E. Biles, “Response surface methods for optimization of constrained multivariable processes”, Industrial and Engineering Chemistry: Process Design and Development 14 (2) (1975) 152–158.

    Article  Google Scholar 

  3. W.E. Biles, “Optimization of multiple-objective computer simulations: a nonlinear goal programming approach”, Proceedings of the 1977 AIDS conference, Chicago (1977) 250–252.

    Google Scholar 

  4. W.E. Biles and J.J. Swain, “Strategies for optimization of multiple response simulation models”, Proceedings of the 1977 Winter Simulation Conference, Gaithersburg, Maryland (1977) pp. 134–142.

    Google Scholar 

  5. G.E.P. Box and K.B. Wilson, “On the experimental attainment of optimum conditions”, Journal of the Royal Statistical Society 13 (1951) 1–45.

    MathSciNet  Google Scholar 

  6. G.E.P. Box and J.S. Hunter, “Multifactor experimental designs for exploring response surfaces”, Annals of Mathematical Statistics 28 (1957) 195–242.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.J. Box, “A new method of constrained optimization and a comparison with other methods”, The Computer Journal 8 (1965) 42–52.

    MATH  MathSciNet  Google Scholar 

  8. S.H. Brooks and M.R. Mickey, “Optimum estimation of gradient direction in steepest ascent experiments”, Biometrics 17 (1) (1961) 48–56.

    Article  MATH  Google Scholar 

  9. N.R. Draper and H. Smith, Applied regression analysis (Wiley, New York, 1966).

    Google Scholar 

  10. J.S. Dyer, “Interactive goal programming”, Management Science 19 (1) (1973).

    Google Scholar 

    Google Scholar 

  11. R.E. Griffith and R.A. Stewart, “A nonlinear programming technique for the optimization of continuous processing systems”, Management Science 7 (1961) 379–392.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Hooke and T.A. Jeeves, “Direct search solution of numerical and statistical problems”, Journal of the Association of Computing Machinery 8 (1961) 212–229.

    MATH  Google Scholar 

  13. J.P. Ignizio, Goal programming and extensions (Lexington Books, D.C. Heath and Company, Lexington, MA, 1976).

    Google Scholar 

  14. J.P.C. Kleijnen, Statistical techniques in simulation, Parts I and II (Marcel Dekker, New York, 1975).

    Google Scholar 

  15. W.R. Klingman and D.M. Himmelblau, “Nonlinear programming with the aid of the multiple gradient summation technique”, Journal of the Association of Computing Machinery 11 (1964) 400–415.

    MATH  MathSciNet  Google Scholar 

  16. D.C. Montgomery and V.M. Bettencourt, “Multiple response surface methods in computer simulation”, Simulation 29 (4) (1977) 113–121.

    Article  MATH  Google Scholar 

  17. R.H. Myers, Response surface methodology (Allyn and Bacon, Boston, MA, 1971).

    Google Scholar 

  18. J.C. Noh, “A two phase complex method for nonlinear process optimization”, 45th National ORSA/TIMS Meeting, Boston, MA (1974).

    Google Scholar 

  19. J.B. Rosen, “The gradient projection method for nonlienar programming: Part II—Nonlinear constraints”, Journal of the Society of Nonlinear and Applied Mathematics 8 (1961) 514–532.

    Article  Google Scholar 

  20. W. Spendley, G.R. Hext and R.F. Himsworth, “Sequential application of simplex designs in optimization and evolutionary operations”, Technometrics 4 (1962) 441–461.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.J. Swain, “Efficient strategies for constrained experimental optimization”, Master's Thesis. University of Notre Dame (1977).

    Google Scholar 

  22. G. Zoutendijk, Methods of feasible directions (Elsevier, New York, 1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Avriel R. S. Dembo

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The mathematical programming society

About this chapter

Cite this chapter

Biles, W.E., Swain, J.J. (1979). Mathematical programming and the optimization of computer simulations. In: Avriel, M., Dembo, R.S. (eds) Engineering Optimization. Mathematical Programming Studies, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120864

Download citation

  • DOI: https://doi.org/10.1007/BFb0120864

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00799-6

  • Online ISBN: 978-3-642-00800-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics