Skip to main content

The coupled cluster method applied to quantum magnetism

  • Chapter
  • First Online:
Quantum Magnetism

Part of the book series: Lecture Notes in Physics ((LNP,volume 645))

Abstract

The Coupled Cluster Method (CCM) is one of the most powerful and universally applied techniques of quantum many-body theory. In particular, it has been used extensively in order to investigate many types of lattice quantum spin system at zero temperature. The ground-and excited-state properties of these systems may now be determined routinely to great accuracy. In this Chapter we present an overview of the CCM formalism and we describe how the CCM is applied in detail. We illustrate the power and versatility of the method by presenting results for four different spin models. These are, namely, the XXZ model, a Heisenberg model with bonds of differing strengths on the square lattice, a model which interpolates between the Kagomé-and triangular-lattice antiferromanets and a frustrated ferrimagnetic spin system on the square lattice. We consider the ground-state properties of all of these systems and we present accurate results for the excitation energies of the spin-half square-lattice XXZ model. We utilise an “extended” SUB2 approximation scheme, and we demonstrate how this approximation may be solved exactly by using Fourier transform methods or, alternatively, by determining and solving the SUB2-m problem. We also present the results of “localised” approximation schemes called the LSUBm or SUBm-m schemes. We note that we must utilise computational techniques in order to solve these localised approximation schemes to “high order.” We show that we are able to determine the positions of quantum phase transitions with much accuracy, and we demonstrate that we are able to determine their quantum criticality by using the CCM in conjunction with the coherent anomaly method (CAM). Also, we illustrate that the CCM may be used in order to determine the “nodal surfaces” of lattice quantum spin systems. Finally, we show how connections to cumulant series expansions may be made by determining the perturbation series of a spin-half triangular-lattice antiferromagnet using the CCM at various levels of LSUBm approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Kalos: Phys. Rev. 128, 1791 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  2. D.M. Ceperley and M.H. Kalos. In: Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer Verlag, Berlin, 1979), p. 145.

    Chapter  Google Scholar 

  3. K. Schmidt and M.H. Kalos. In: Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer Verlag, Berlin, 1984), p. 125.

    Chapter  Google Scholar 

  4. R. Guardiola. In: Microscopic Quantum-Many-Body Theories and Their Applications, edited by J. Navarro and A. Polls, Lect. Notes Phys. 510, 269 (Springer-Verlag, Berlin-Heidelberg 1998).

    Chapter  Google Scholar 

  5. J.W. Clark and E. Feenberg: Phys. Rev. 113, 388 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  6. H.W. Jackson and E. Feenberg: Rev. Mod. Phys. 34, 686 (1962).

    Article  ADS  Google Scholar 

  7. E. Feenberg. In: Theory of Quantum Liquids, edited by K. Binder, (Springer-Verlag, New York, 1969).

    Google Scholar 

  8. J.W. Clark. In: Progress in Particle and Nuclear Physics Vol. 2, edited by D.H. Wilkinson. (Pergamon, Oxford, 1979), p. 89.

    Google Scholar 

  9. V.R. Pandharipande and R.B. Wiringa: Rev. Mod. Phys. 51, 821 (1979).

    Article  ADS  Google Scholar 

  10. E. Krotscheck and J.W. Clark: Nucl. Phys. A333, 77 (1980).

    Article  Google Scholar 

  11. J.W. Clark. In: The Many-Body Problem: Jastrow Correlations Versus Brueckner Theory, edited by R. Guardiola and J. Ros, Lect. Notes Phys. 138, 184 (Springer-Verlag, Berlin-Heidelberg 1981).

    Chapter  Google Scholar 

  12. S. Rosati. In: International School of Physics Enrico Fermi, Course LXXIX, edited by A. Molinari (North-Holland, Amsterdam, 1981), p. 73.

    Google Scholar 

  13. A. Fabrocini and S. Fantoni. In: First International Course on Condensed Matter, edited by D. Prosperi, S. Rosati and S. Violini, ACIF Series, Vol. 8 (World Scientific, Singapore, 1987), p. 87.

    Google Scholar 

  14. S. Fantoni and V.R. Pandharipande: Phys. Rev. C 37, 1687 (1988).

    Article  ADS  Google Scholar 

  15. S. Fantoni and A. Fabrocini. In: Microscopic Quantum Many-Body Theories and Their Applications, edited by J. Navarro and A. Polls, Lect. Notes Phys. 510, 119 (Springer-Verlag, Berlin-Heidelberg 1998).

    Chapter  Google Scholar 

  16. F. Coester: Nucl. Phys. 7, 421 (1958); F. Coester and H. Kümmel, ibid. 17, 477 (1960).

    Article  Google Scholar 

  17. J. Čižek: J. Chem. Phys. 45, 4256 (1966); Adv. Chem. Phys. 14, 35 (1969).

    Article  Google Scholar 

  18. R.F. Bishop and K.H. Lührmann: Phys. Rev. B 17, 3757 (1978).

    Article  ADS  Google Scholar 

  19. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky: Phys Rep. 36C, 1 (1978).

    Article  ADS  Google Scholar 

  20. J.S. Arponen: Ann. Phys. (N.Y.) 151, 311 (1983).

    Article  ADS  Google Scholar 

  21. R.F. Bishop and H. Kümmel: Phys. Today 40(3), 52 (1987).

    Article  Google Scholar 

  22. J.S. Arponen, R.F. Bishop and E. Pajanne: Phys. Rev. A 36, 2519 (1987); ibid. 36, 2539 (1987): In: Condensed Matter Theories, Vol. 2, edited by P. Vashishta, R.K. Kalia, and R.F. Bishop (Plenum, New York, 1987), p. 357.

    Article  ADS  Google Scholar 

  23. R.J. Bartlett: J. Phys. Chem. 93, 1697 (1989)

    Article  Google Scholar 

  24. R.F. Bishop: Theor. Chim. Acta 80, 95 (1991).

    Article  Google Scholar 

  25. R. Jastrow: Phys. Rev. 98, 1479 (1955).

    Article  ADS  Google Scholar 

  26. F. Iwamoto and M. Yamada: Prog. Theor. Phys. 17, 543 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  27. J.W. Clark and P. Westhaus: J. Math. Phys. 9, 131 (1968), P. Westhaus and J.W. Clark: ibid. 9, 149 (1968).

    Article  ADS  Google Scholar 

  28. M. Gaudin, J. Gillespie, and G. Ripka: Nucl. Phys. A176, 237 (1971); S. Fantoni and S. Rosati: Nuovo Cim. 20A, 179 (1974); G. Ripka: Phys. Rep. 56 1 (1979): Nucl. Phys. A314 115 (1979).

    Article  Google Scholar 

  29. S. Fantoni and S. Rosati: Lett. Nuovo Cim. 10, 545 (1974); E. Krotscheck and M.L. Ristig: Phys. Lett. 48A, 17 (1974); Nucl. Phys. A242, 389 (1975).

    Article  Google Scholar 

  30. S. Rosati and M. Viviani. In: First International Course on Condensed Matter. edited by D. Prosperi, S. Rosati, and G. Violini, ACIF Series, Vol. 8 (World Scientific, Singapore, 1988), p.231.

    Google Scholar 

  31. R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson: Phys. Rev. B 61, 6775 (2000).

    Article  ADS  Google Scholar 

  32. R.F. Bishop, D.J.J. Farnell, and Chen Zeng: Phys. Rev. B 59, 1000 (1999).

    Article  ADS  Google Scholar 

  33. W. Marshall: Proc. R. Soc. London Ser. A 232, 48 (1955).

    Article  ADS  Google Scholar 

  34. H. A. Bethe: Z. Phys. 71, 205 (1931).

    Article  ADS  Google Scholar 

  35. L. Hulthén: Ark. Mat. Astron. Fys. A 26, No. 11 (1938).

    Google Scholar 

    Google Scholar 

  36. R. Orbach: Phys. Rev. 112, 309 (1958); C.N. Yang and C.P. Yang: ibid. 150, 321 (1966): ibid. 150, 327 (1966).

    Article  ADS  Google Scholar 

  37. J. Des Cloiseaux and J.J. Pearson: Phys. Rev. 128, 2131 (1962): L.D. Faddeev and L.A. Takhtajan: Phys. Lett. 85A, 375 (1981).

    Article  ADS  Google Scholar 

  38. S.R. White and R. Noack: Phys. Rev. Lett. 68, 3487 (1992); S.R. White: ibid. 69, 2863 (1992); Phys. Rev. B 48 10345 (1993).

    Article  ADS  Google Scholar 

  39. Low-Dimensional Quantum Field Theories for Condensed Matter Physicists. edited by L. Yu, S. Lundquist, and G. Morandi. Series in Modern Condensed Matter Physics, Vol. 7 (World Scientific, Singapore, 1995).

    Google Scholar 

  40. M.L. Ristig and J.W. Kim: Phys. Rev. B 53, 6665 (1996).

    Article  ADS  Google Scholar 

  41. M.L. Ristig, J.W. Kim, and J.W. Clark. In: Theory of Spin Lattices and Lattice Gange Models, edited by J.W. Clark and M.L. Ristig, Lecture Notes in Physics, Vol. 494 (Springer-Verlag, Berlin 1997), p. 62.

    Chapter  Google Scholar 

  42. M.L. Ristig, J.W. Kim, and J.W. Clark: Phys. Rev. B, 57, 56 (1998).

    Article  ADS  Google Scholar 

  43. R.F. Bishop, D.J.J. Farnell, and M.L. Ristig. In: Condensed Matter Theories, Vol. 14, edited by D.J. Ernst, I.E. Perakis, and A.S. Umar (Nova Science Publ., Huntington, New York, 2000), p. 191.

    Google Scholar 

  44. D. J. J. Farnell and M. L. Ristig. In: Advances in Quantum Many-Body Theory, Vol. 5 edited by Raymond F. Bishop, Klaus A. Gernoth, and Niels R. Walet, p. 223 (World Scientific, Singapore, 2001).

    Chapter  Google Scholar 

  45. A.D. Jackson, A. Lande, and R.A. Smith: Phys. Rev. Lett., 54, 1469 (1985); E. Krotscheck, R.A. Smith, and A.D. Jackson. Phys. Rev. A 33, 3535 (1986).

    Article  ADS  Google Scholar 

  46. R.F. Bishop. In: Recent Progress in Many-Body Theories, Vol. 4, edited by E. Schachinger, H. Mitter, and H. Sormann (Plenum Press, New York, 1995). p. 195.

    Chapter  Google Scholar 

  47. M. Roger and J.H. Hetherington: Phys. Rev. B 41, 200 (1990); Europhys. Lett. 11, 255 (1990).

    Article  ADS  Google Scholar 

  48. R.F. Bishop, J.B. Parkinson, and Y. Xian Phys. Rev. B 44, 9425 (1991).

    Article  ADS  Google Scholar 

  49. R.F. Bishop, J.B. Parkinson, and Y. Xian: Phys. Rev. B 46, 880 (1992).

    Article  ADS  Google Scholar 

  50. R.F. Bishop, J.B. Parkinson, and Y. Xian: J. Phys. Condens. Matter 5, 9169. (1993).

    Article  ADS  Google Scholar 

  51. D.J.J. Farnell and J.B. Parkinson: J. Phys.: Condens. Matter 6, 5521 (1994).

    ADS  Google Scholar 

  52. Y. Xian: J. Phys.: Condens. Matter 6, 5965 (1994).

    ADS  Google Scholar 

  53. R. Bursill, G.A. Gehring, D.J.J. Farnell, J.B. Parkinson, T. Xiang, and C. Zeng: J. Phys.: Condens. Matter 7, 8605 (1995).

    ADS  Google Scholar 

  54. R. Hale, Ph.D. Thesis, UMIST, Manchester, United Kingdom (1995).

    Google Scholar 

  55. R.F. Bishop, R.G. Hale, and Y. Xian: Phys. Rev. Lett. 73, 3157 (1994).

    Article  ADS  Google Scholar 

  56. R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson: J. Phys.: Condens. Matter 8, 11153 (1996).

    ADS  Google Scholar 

  57. D.J.J. Farnell, S.A. Krüger, and J.B. Parkinson: J. Phys.: Condens. Matter 9, 7601 (1997).

    ADS  Google Scholar 

  58. R.F. Bishop, Y. Xian, and C. Zeng. In: Condensed Matter Theories, Vol. 11, edited by E.V. Ludeña, P. Vashishta, and R.F. Bishop (Nova Science, Commack, New York, 1996), p. 91.

    Google Scholar 

  59. C. Zeng, D.J.J. Farnell, and R.F. Bishop: J. Stat. Phys., 90, 327 (1998).

    Article  ADS  Google Scholar 

  60. R.F. Bishop, D.J.J. Farnell, and J.B. Parkinson. Phys. Rev. B 58, 6394 (1998).

    Article  ADS  Google Scholar 

  61. J. Rosenfeld, N.E. Ligterink, and R.F. Bishop: Phys. Rev. B 60, 4030 (1999).

    Article  ADS  Google Scholar 

  62. R.F. Bishop, D.J.J. Farnell, S.E. Krüger, J.B. Parkinson, J. Richter, and C. Zeng: J. Phys.: Condens. Matter 12, 7601 (2000).

    Google Scholar 

  63. R.F. Bishop, D.J.J. Farnell, and M.L. Ristig: Int. J. Mod. Phys. B 14, 1517 (2000).

    ADS  Google Scholar 

  64. S.E. Krüger, J. Richter, J. Schulenberg, D.J.J. Farnell, and R.F. Bishop: Phys. Rev. B 61, 14607 (2000).

    Article  ADS  Google Scholar 

  65. D.J.J. Farnell, R.F. Bishop, and K.A. Gernoth: Phys. Rev. B 63, 220402R (2001).

    Article  ADS  Google Scholar 

  66. D.J.J. Farnell, K.A. Gernoth, and R.F. Bishop: Phys. Rev. B 64, 172409 (2001).

    Article  ADS  Google Scholar 

  67. D.J.J. Farnell, K.A. Gernoth, and R.F. Bishop: J. Stat. Phys. 108, 401 (2002).

    Article  Google Scholar 

  68. N.B. Ivanov, J. Richter, and D.J.J. Farnell: Phys. Rev. B 66, 014421 (2002).

    Article  ADS  Google Scholar 

  69. C.H. Llewellyn Smith and N.J. Watson: Phys. Lett. B 302, 463 (1993).

    Article  ADS  Google Scholar 

  70. R.F. Bishop, A.S. Kendall, L.Y. Wong, and Y. Xian: Phys. Rev. D 48, 887 (1993); S.J. Baker, R.F. Bishop, and N.J. Davidson: Phys. Rev D 53, 2610 (1996): Nucl. Phys. B (Proc. Supp.) 53, 834 (1997).

    Article  ADS  Google Scholar 

  71. N.E. Ligterink, N.R. Walet, and R.F. Bishop: Ann. Phys. (NY) 284, 215 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  72. N.E. Ligterink, N.R. Walet, and R.F. Bishop: Ann. Phys. (NY) 267, 97 (1998): Phys. Rev. E 63, 037103 (2001).

    Article  ADS  Google Scholar 

  73. T. Barnes, D. Kotchan, and E.S. Swanson: Phys. Rev. B 39, 4357 (1989).

    Article  ADS  Google Scholar 

  74. P. W. Anderson: Phys. Rev. 86, 694 (1952).; T. Oguchi: Phys. Rev. 117, 117 (1960).

    Article  ADS  Google Scholar 

  75. W. Zheng, J. Oitmaa, and C.J. Hamer: Phys. Rev. B 43, 8321 (1991).

    Article  ADS  Google Scholar 

  76. A.W. Sandvik: Phys. Rev. B 56, 11678 (1997).

    Article  ADS  Google Scholar 

  77. S.E. Krüger, D.J.J. Farnell, and J. Richter. In: Proceedings of the 11 th International Conference on Recent Progress in, Many-Body Theories, edited by R.F. Bishop, T. Brandes, K.A. Gernoth, N.R. Walet, and Y. Xian, Series on Advances in Quantum Many-Body Theory Vol. 6, (World Scientific, Singapore, 2002) p. 365.

    Chapter  Google Scholar 

  78. M. Suzuki: J. Phys. Soc. Japan 55, 4205 (1986).

    Article  ADS  Google Scholar 

  79. R.R.P. Singh, M.P. Gelfand, and D.A. Huse: Phys. Rev. Lett, 61, 2484, (1988).

    Article  ADS  Google Scholar 

  80. N.B. Ivanov, S.E. Krüger, and J. Richter: Phys. Rev. B 53, 2633 (1996).

    Article  ADS  Google Scholar 

  81. S.E. Krüger and J. Richter: Phys. Rev. B 64 024433, (2001).

    Article  ADS  Google Scholar 

  82. P. Tomezak and J. Richter: J. Phys. A: Math. Gen. 34 L461, (2001).

    Article  ADS  Google Scholar 

  83. D.J.J. Farnell and R.F. Bishop: arXiv.cond-mat/0311126.

    Google Scholar 

  84. S. Chakravarty, B.I. Halperin and D.R. Nelson: Phys. Rev. B 39, 2344, (1989).

    Article  ADS  Google Scholar 

  85. R.R.P. Singh and D.A. Huse: Phys. Rev. Lett. 68, 1766 (1992).

    Article  ADS  Google Scholar 

  86. B. Bernn, P. Lecheminant, C. Lhuillier, and L. Pierre: Phys. Scripta, T 49, 192 (1993); Phys. Rev. B 50, 10018 (1994).

    Article  Google Scholar 

  87. T. Jolicoeur and J.C. LeGuillon: Phys. Rev. B 40, 2727 (1989).

    Article  ADS  Google Scholar 

  88. P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindzingre: Phys. Rev. B 56, 2521 (1997).

    Article  ADS  Google Scholar 

  89. C. Waldtmann, H.U. Everts, B. Bernu, C. Lhuillier, P. Sindzingre, P. Lecheminant, and L. Pierre: Eur. Phys. J. B 2, 501 (1998).

    Article  ADS  Google Scholar 

  90. P. Chandra and B. Docout: Phys. Rev. B 38, 9335 (1988).

    Article  ADS  Google Scholar 

  91. H.J. Schulz and T.A.L. Ziman: Europhys. Lett. 18, 355 (1992); H.J. Schulz. T.A.L. Ziman, and D. Poilblane: J. Phys. I 6, 675 (1996).

    Article  ADS  Google Scholar 

  92. J. Richter: Phys. Rev. B 47, 5794 (1993).

    Article  ADS  Google Scholar 

  93. J. Oitmaa and Zheng Weihong: Phys. Rev. B 54, 3022 (1996).

    Article  ADS  Google Scholar 

  94. R.R.P. Singh, Zheng Weihong, C.J. Hamer, and J. Oitmaa: Phys. Rev. B 60, 7278 (1999).

    Article  ADS  Google Scholar 

  95. V.N. Kotov and O.P. Sushkov: Phys. Rev. B 61, 11820 (2000).

    Article  ADS  Google Scholar 

  96. L. Capriotti and S. Sorella: Phys. Rev. Lett. 84, 3173 (2000).

    Article  ADS  Google Scholar 

  97. O. Kahn, Y. Pei, and Y. Jornauz. In: Inorganic Materials, edited by D.W. Bruce and D.O. O'Hare (John Wiley & Sons Ltd., New York, 1992).

    Google Scholar 

  98. N.B. Ivanov, J. Richter, and U. Schollwöck: Phys. Rev. B 58, 14456 (1998).

    Article  ADS  Google Scholar 

  99. J. Richter, U. Schollwöck, and N.B. Ivanov: Physica B 281 & 282 845 (2000).

    Article  ADS  Google Scholar 

  100. A. Moreo, E. Dagotto, T. Jolicoeur and J. Riera: Phys. Rev. B 42, 6283 (1990).

    Article  ADS  Google Scholar 

  101. K. Kubo and T. Kishi: J. Phys. Soc. Jpn. 60, 567 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Schollwöck Johannes Richter Damian J. J. Farnell Raymod F. Bishop

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Farnell, D.J.J., Bishop, R.F. (2004). The coupled cluster method applied to quantum magnetism. In: Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F. (eds) Quantum Magnetism. Lecture Notes in Physics, vol 645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0119597

Download citation

  • DOI: https://doi.org/10.1007/BFb0119597

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21422-9

  • Online ISBN: 978-3-540-40066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics