Skip to main content

Metabolism of the carcinogen chromate by cellular constituents

  • Conference paper
  • First Online:
Inorganic Elements in Biochemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 54))

Abstract

The redox chemistry of chromium(VI) is discussed with respect to the cellular metabolism of the carcinogen chromate in vivo. Possible sites for cellular reduction of chromium(VI) to chromium(III) are considered. The reactions of amino acids, ascorbic acid, carboxylic acids, thiol-containing mole-cules and other small molecules with chromate under physiological conditions are presented. In general only ascorbate and those molecules containing sulfhydryl groups are capable of easily reducing chromate at pH 7.4. Thus, in the cytoplasm, glutathione, cysteine and ascorbate are likely candidates to react with chromate. While most proteins are unreactive toward chromate, certain redox proteins are active in reducing chromate. The heme proteins hemoglobin and cytochrome P-450 possess chromate-reductase activity, whereas cytochrome c and myoglobin are inactive. The NADPH-dependent flavoenzymes glutathione reductase and NADPH-cytochrome P-450 reductase also possess chromate-reductase activity. However, the NAD(P)H enzymes, isocitrate dehydrogenase, glutamate dehyrogenase and malate dehydrogenase do not reduce chromate. Both microsomes and mitochondria possess chromate-reductase activity. The microsomal activity is accounted for by the NADPH-cytochrome P-450 reductase/cytochrome P-450 system. The enzyme(s) responsible for the mitochondrial reduction of chromate have not been identified. Chromium(VI) and its metabolite chromium(III) inhibit the normal activities of enzymes which bind chromium(III) or reduce chromate. The metabolism of chromate involves the generation of reactive intermediates which ultimately bind to cellular constituents and damage their function in the cell.

Postscript. Our continuing kinetic studies of thiol-chromate reactions (see Sect. 7) indicate that the logarithms of the observed rate constants (1 M Tris · HCl, pH 7.4, 25 °C) show an inverse linear relationship to the microscopic pKa’s of the thiols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GSH:

glutathione (reduced form)

GSSG:

glutathione (oxidized form)

Cys:

cysteine

PSH:

penicillamine (reduced form)

PSSP:

penicillamine (oxidized form)

BAL:

2,3-dimercaptopropanol

Unithiol:

2,3-dimercapto-1-propane sulfonic acid

DTT:

dithiothreitol

NADH:

nicotinamide adenine dinucleotide (reduced form)

NAD+ :

nicotinamide adenine dinucleotide (oxidized form)

NADPH:

nicotinamide adenine dinucleotide phosphate (reduced form)

NADP+ :

nicotinamide adenine dinucleotide phosphate (oxidized form)

RBC:

red blood cell

Hb:

deoxyhemoglobin

Hb+ :

methemoglobin

Mb:

deoxymyoglobin

Mb+ :

metmyoglobin

GSSG-R:

glutathione reductase

Tris:

tris(hydroxymethyl)aminomethane

BP:

benzo[a]pyrene

ER:

endoplasmic reticulum

mt:

mitochondria

13 References

  1. Norseth, T.: Environ. Health Perspect. 40, 121 (1981)

    CAS  Google Scholar 

  2. Sirover, M. A.: ibid. 40, 163 (1981)

    CAS  Google Scholar 

  3. Zakour, R. A., Kunkel, T. A., Loeb, L. A.: ibid. 40, 197 (1981)

    CAS  Google Scholar 

  4. Wetterhahn Jennette, K.: ibid. 40, 233 (1981)

    Google Scholar 

  5. Jennette, K. W.: Biol. Trace Element Res. 1, 55 (1979)

    CAS  Google Scholar 

  6. Warren, E. et al.: Mutat. Res. 90, 111 (1981)

    CAS  Google Scholar 

  7. Tsapakos, M. J., Hampton, T. H., Wetterhahn Jennette, K.: J. Biol. Chem. 256, 3623 (1981)

    CAS  Google Scholar 

  8. Tsapakos, M. J., Wetterhahn, K. E.: submitted

    Google Scholar 

  9. Espenson, J. H.: Acc. Chem. Res. 3, 347 (1970)

    CAS  Google Scholar 

  10. “C. R. C. Handbook of Chemistry and Physics”, 53rd ed. (West, R. C. ed.), D. 111, Cleveland, CRC press, 1972

    Google Scholar 

  11. Baes, C. F., Mesmer, R. E.: The Hydrolysis of Cations, pp. 211–219, New York, John Wiley, 1976

    Google Scholar 

  12. Cotton, F. A., Wilkinson, G.: Advanced Inorganic Chemistry, 4th ed., p. 733, New York, John Wiley, 1980

    Google Scholar 

  13. Taube, H., Gordon, G.: INorg. Chem. 1, 69 (1962)

    Google Scholar 

  14. Kon, H.: J. Inorg. Nuc. Chem. 25, 933 (1963)

    CAS  Google Scholar 

  15. Mahapatro, S. N., Krumpolc, M., Rocek, J.: J. Am. Chem. Soc. 102, 3799 (1980)

    CAS  Google Scholar 

  16. Espenson, J. H.: ibid. 86, 5101 (1964)

    CAS  Google Scholar 

  17. Greenblatt, M., Banks, E., Post, B.: Acta Crystallogr. 23, 166 (1967)

    CAS  Google Scholar 

  18. Russev, p., Mitewa, M., Bontchev, P. R.: J. Inorg. Nuc. Chem. 43, 35 (1981)

    CAS  Google Scholar 

  19. Krumpolc, M., Rocek, J.: J. Am. Chem. Soc. 98, 872 (1976)

    CAS  Google Scholar 

  20. Hasan, F., Rocek, J.: ibid. 94, 9073 (1972)

    CAS  Google Scholar 

  21. Hasan, F., Rocek, J.: ibid. 94, 8964 (1972)

    Google Scholar 

  22. Srinivasan, V., Rocek, J.: ibid. 96, 127 (1974)

    CAS  Google Scholar 

  23. Hasan, F., Rocek, J.: J. Org. Chem. 39, 2612 (1974)

    CAS  Google Scholar 

  24. Hasan, F., Rocek, J.: J. Am. Chem. Soc. 97, 1444 (1975)

    CAS  Google Scholar 

  25. Krumpolc, M., De Boer, B. G., Rocek, J.: ibid. 100, 145 (1978)

    CAS  Google Scholar 

  26. Hintze, R. E., Rocek, J.: ibid. 99, 132 (1977)

    CAS  Google Scholar 

  27. Beattie, J. K., Haight, G. P., Jr.: Progr. Inorg. Chem. 17, 93 (1972)

    CAS  Google Scholar 

  28. Huss, E., Klemm, W.: Angew. Chem. 66, 468 (1954)

    Google Scholar 

  29. Griffith, W. P.: Coord. Chem. Rev. 5, 459 (1954)

    Google Scholar 

  30. Taube, H.: Electron Transfer Reactions of complex Ions in Solution, p. 18, New York, Academic Press, 1970

    Google Scholar 

  31. Beck, M. T., Bardi, I.: Acta Chim. Hung. 29, 283 (1961)

    CAS  Google Scholar 

  32. Cooper, J. N. et al.: INorg. Chem. 12, 2075 (1973)

    CAS  Google Scholar 

  33. Espenson, J. H., King, E. L.: J. Am. Chem. Soc. 85, 3328

    Google Scholar 

  34. Espenson, J. H.: ibid. 86, 5101 (1964)

    CAS  Google Scholar 

  35. Sullivan, J. C.: ibid. 87, 1495 (1965)

    CAS  Google Scholar 

  36. Birk, J. P.: ibid. 91, 3189 (1969)

    CAS  Google Scholar 

  37. McCann, J. P., McAuley, A.: J. Chem. Soc. Dalton 783 (1975)

    Google Scholar 

  38. McAuley, A., Olatunji, M. A.: Can. J. Chem. 55, 3335 (1977)

    CAS  Google Scholar 

  39. Samitz, M. H., Pomerantz, H.: Arch. Ind. Health 18, 473 (1958)

    CAS  Google Scholar 

  40. Samitz, M. H., Katz, S.: J. Invest. Derm. 43, 35 (1964)

    CAS  Google Scholar 

  41. de Meester, P. et al.: Inorg. Chem. 16, 1494 (1977)

    Google Scholar 

  42. Agent, C. L., Pennington, D. E.: Am. Chem. Soc. Abst. 34th. SW Regional Meet., Corpus Christi, TX, Inorg. 23 (1978)

    Google Scholar 

  43. McAuliffe, C. A., Murray, S. G.: Inorg. Chim. Acta Rev. 103 (1972)

    Google Scholar 

  44. Rajka, G., Vincze, E., Csanyi, G.: Borgyogy es venerol. 31, 18 (1955)

    Google Scholar 

  45. Samitz, M. H., Shrager, J., Katz, S.: Indust. Med. Surg. 31, 427 (1962)

    CAS  Google Scholar 

  46. Samitz, M. H., Katz, S.: Arch. Env. Health 11, 770 (1965)

    CAS  Google Scholar 

  47. Simarvoryan, P. S.: Tr. Erevan Med. Inst. 15, 219 (1971)

    Google Scholar 

  48. Samitz, M. H., Scheiner, D. M., Katz, S.: Arch. Env. Health 17, 44 (1968)

    CAS  Google Scholar 

  49. Baldea, I., Munteano, L.: Stud. Univ. Babes-Bolyai 25, 24 (1980)

    CAS  Google Scholar 

  50. Mali, J. W. H., Van Kooten, W. J., Van Neer, F. C. J.: J. Invest. Derm 41, 111 (1963)

    CAS  Google Scholar 

  51. McAuley, A., Olatunji, M. A.: Can. J. Chem. 55, 3328 (1977)

    CAS  Google Scholar 

  52. Olatunji, M. A., McAuley, A.: J. Chem. Soc. Dalton 682 (1975)

    Google Scholar 

  53. Muirhead, K. A., Haight, G. P., Jr.: Inorg. Chem. 12, 1116 (1973)

    CAS  Google Scholar 

  54. Baldea, I., Niac, G.: ibid. 6, 1232 (1968)

    Google Scholar 

  55. Pearson, R. G.: J. Chem. Ed. 45, 581 (1968)

    CAS  Google Scholar 

  56. Sugiura, Y., Hojo, Y., Tanaka, H.: Chem. Pharm. Bull 20, 1362 (1972)

    CAS  Google Scholar 

  57. Hojo, Y., Sugiura, Y., Tanaka, H.: J. Inorg. Nuc. Chem. 39, 1859 (1977)

    CAS  Google Scholar 

  58. de Meester, P., Hodgson, D. J.: J. Chem. Soc. Dalton 1604 (1977)

    Google Scholar 

  59. Rabenstein, D. L., Guevemont, R., Evans, C. A.: Metal Ions in Biol. Systems 9, 103 (1979)

    CAS  Google Scholar 

  60. Prins, H. K.: Vox Sang 7, 370 (1962)

    CAS  Google Scholar 

  61. Oehme, F. W.: Clin. Toxicol. 5, 215 (1972)

    CAS  Google Scholar 

  62. Braun, H. A., Lusky, L. M., Calvery, H. O.: J. Pharm. Exp. Therap. (Supp.) 87, 119 (1946)

    CAS  Google Scholar 

  63. Cole, H. N.: Arch. Dermat. Syph. 67, 30 (1953)

    Google Scholar 

  64. Belyaeva, L. N., Klyushina, L. V.: Vopr. Gigieny Prof. Patol. I Toksikol., Sb., Sverdlovsk 413 (1964)

    Google Scholar 

  65. Gruber, J. E., Jennette, K. W.: Biochem. Biophys. Res. Commun. 82, 700 (1978)

    CAS  Google Scholar 

  66. Garcia, J. D., Jennette, K. W.: J. Inorg. Biochem. 14, 281 (1981)

    CAS  Google Scholar 

  67. Espenson, J. H.: J. Am. Chem. Soc. 92, 1880 (1970)

    CAS  Google Scholar 

  68. Grogan, C. H., Oppenheimer, H.: Arch. Biochem. Biophys. 56, 204 (1955)

    CAS  Google Scholar 

  69. Ingrand, J.: Biochem. Pharmacol. 15, 1649 (1966)

    CAS  Google Scholar 

  70. Baetjer, A. M. et al.: Arch. Ind. Health 12, 258 (1955)

    CAS  Google Scholar 

  71. Rifkind, J. M.: Biochemistry 13, 2475 (1974)

    CAS  Google Scholar 

  72. Winfield, M. E.: J. Mol. Biol. 12, 600 (1965)

    CAS  Google Scholar 

  73. Hopfield, J. J.: Biophys. J. 18, 311 (1977)

    CAS  Google Scholar 

  74. Potasek, M. J., Hopfield, J. J.: Proc. Natl. Acad. Sci. USA 74, 3817 (1977)

    CAS  Google Scholar 

  75. Huth, S. W. et al.: J. Am. Chem. Soc. 98, 8467 (1976)

    CAS  Google Scholar 

  76. Gray, S. J., Sterling, K.: J. Clin. Invest. 29, 1604 (1950)

    CAS  Google Scholar 

  77. Ebaugh, F. G. et al.: Proc. IX Congress Int. Soc. Hematol. 3, 489 (1962)

    Google Scholar 

  78. Pearson, H. A.: Blood 22, 218 (1963)

    CAS  Google Scholar 

  79. Malcom, D., Ranney, H. M., Jacobs, A. S.: ibid. 21, 8 (1963)

    Google Scholar 

  80. Jonxis, J. H. P.: J. Pediat. 59, 765 (1961)

    CAS  Google Scholar 

  81. Green, D. W., Ingam, U. M., Perutz, M. F.: Proc. Roy. Soc. A 225, 287 (1954)

    Google Scholar 

  82. Chernoff, A. I.: Nature 192, 327 (1961)

    CAS  Google Scholar 

  83. Winterbourn, C., Carrell, R. W.: Biochem. J. 165, 141 (1977)

    CAS  Google Scholar 

  84. Misra, H. P., Fridovich, I.: J. Biol. Chem. 247, 6960 (1972)

    CAS  Google Scholar 

  85. Allen, D. W., Jandl, J. H.: J. Clin. Invest. 40, 454 (1961)

    CAS  Google Scholar 

  86. Antonini, E., Brunori, M.: J. Biol. Chem. 244, 3909 (1969)

    CAS  Google Scholar 

  87. Brittain, T.: Biochem. J. 187, 803 (1980)

    CAS  Google Scholar 

  88. Koutras, G. A. et al.: J. Clin. Invest. 43, 323 (1964)

    CAS  Google Scholar 

  89. Koutras, G. A. et al.: Brit. J. Haemat. 11, 360 (1965)

    CAS  Google Scholar 

  90. Schulz, G. E. et al.: Nature 273, 120 (1978)

    CAS  Google Scholar 

  91. Kowalsky, A.: J. Biol. Chem. 244, 6619 (1969)

    CAS  Google Scholar 

  92. Dawson, J. W., et al.: Proc. Natl. Acad. Sci. USA 69, 30 (1972)

    CAS  Google Scholar 

  93. Yandell, J. K., Fay, D. P., Sutin, N.: J. Am. Chem. Soc. 95, 1131 (1973)

    CAS  Google Scholar 

  94. Grimes, C. J., Piszkiewicz, D., Fleischer, E. B.: Proc. Natl. Acad. Sci. USA 71, 1408 (1974)

    CAS  Google Scholar 

  95. Farver, O., Pecht, I.: ibid. 78, 4190 (1981)

    CAS  Google Scholar 

  96. Cookson, D. J., Hayes, M. T., Wright, P. E.: Biochim. Biophys. Acta 591, 162 (1980)

    CAS  Google Scholar 

  97. Farver, O., Shahak, Y., Pecht, I.: Biochemistry 21, 1885 (1982)

    CAS  Google Scholar 

  98. Werringloer, J., Estabrook, R. W.: Arch. Biochem. Biophys. 167, 270 (1975)

    CAS  Google Scholar 

  99. Thomas, P. E. et al.: J. Biol. Chem. 251, 1385 (1976)

    CAS  Google Scholar 

  100. Strittmatter, P.: ibid. 234, 2665 (1959)

    CAS  Google Scholar 

  101. Neufield, E. F., Kaplan, N. O., Colowick, S. P.: Biochim. Biophys. Acta 17, 525 (1955)

    Google Scholar 

  102. Phillips, A. H., Langdon, R. G.: J. Biol. Chem. 237, 2652 (1962)

    CAS  Google Scholar 

  103. Hildebrant, A. G.: in: Biological Hydroxylation Mechanisms (Eds. Boyd, G. S., Smellie, R. M. S.) pp. 79–102, New York, Academic Press, 1972

    Google Scholar 

  104. Omura, T., Sato, R.: J. Biol. Chem. 239, 2370 (1964)

    CAS  Google Scholar 

  105. Omura, T. et al.: Fed. Proc. 24, 1181 (1965)

    CAS  Google Scholar 

  106. Conney, A. H. et al.:J. Biol. Chem. 243, 3912 (1968)

    CAS  Google Scholar 

  107. Gillette, J. R.: Metabolism 20, 215 (1971)

    CAS  Google Scholar 

  108. Wetterhahn Jennette, K.: J. Am. Chem. Soc. 104, 874 (1982)

    Google Scholar 

  109. Dixon, J. R. et al.: Cancer Res. 30, 1068 (1970)

    CAS  Google Scholar 

  110. Thomson, R., Webster, I., Kilroe-Smith, T. A.: Environ. Res. 7, 149 (1974)

    CAS  Google Scholar 

  111. Calop, J., Burckhart, M.-F., Fontanges, R.: Eur. J. Toxicol. 9, 271 (1976)

    CAS  Google Scholar 

  112. Egilsson, U., Evans, I. H., Wilkie, D.: Molec. gen. Genet. 174, 39 (1979)

    CAS  Google Scholar 

  113. Scaife, J. F., Vittorio, P. V.: Can. J. Biochem. 42, 503 (1964)

    CAS  Google Scholar 

  114. Rajam, P. C., Jackson, A.-L.: Proc. Soc. Exp. Biol. Med. 99, 210 (1958)

    CAS  Google Scholar 

  115. Sayato, Y. et al.: J. Pharm. Dyn. 3, 17 (1980)

    CAS  Google Scholar 

  116. Langard, S.: Biol. Trace Element Res. 1, 45 (1979)

    Google Scholar 

  117. Niranjan, B. G., Avadhani, N. G.: J. Biol. Chem. 255, 6575 (1980)

    CAS  Google Scholar 

  118. Mahler, H. R., Cordes, E. H.: Biological Chemistry, 2nd Ed., p. 30, New York, Harper and Row, 1971

    Google Scholar 

  119. Lehninger, A. L.: Biochemistry, 2nd Ed., p. 479, New York, Worth Publishers, Inc., 1975

    Google Scholar 

  120. Clark, W. M.: Oxidation-Reduction Potentials of Organic Systems, pp. 502–505, Huntington, Robert E. Krieger Publishing Co., 1972

    Google Scholar 

  121. Beutler, E., Duron, O., Kelly, B. M.: J. Lab. Clin. Med. 61, 882 (1963)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Connett, P.H., Wetterhahn, K.E. (1983). Metabolism of the carcinogen chromate by cellular constituents. In: Inorganic Elements in Biochemistry. Structure and Bonding, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111319

Download citation

  • DOI: https://doi.org/10.1007/BFb0111319

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12542-6

  • Online ISBN: 978-3-540-44420-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics