Skip to main content

Design of an active arm support for assisting arm movements

  • Part V Industrial Robot Analysis, Design And Control
  • Conference paper
  • First Online:
Progress in system and robot analysis and control design

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 243))

Abstract

In this paper we have explored areas of application for health care manipulators and possible user groups. We have shown the steps in the design approach to the conceptual mechanism from the AAS. The future work will be measurement from properties of the muscle with the elbow parameterization test-bed to get a database to design one part of the control area from the AAS. More work on the mechanical design is required before a functional prototype can be built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kazerooni H, Her M 1994 The Dynamics and Control of a Haptic Interface Device. IEEE Transaction on Robotics and Automation Vol.10 No. 4: 453–464

    Article  Google Scholar 

  2. LeBlanc M. and Leifer L 1982 Environmental Control and Robotic Manipulation Aids. Engineering in Medicine and Biology Magazine December 1982: 16–22.

    Google Scholar 

  3. Sheridan T 1992 Telerobotics, Automation and Human Supervisory Control. MIT press pg 102, ISBN 0-262-19316-7

    Google Scholar 

  4. Reswick J B 1990 The moon over Dubrovnik — a tale of worldwide impact on persons with disabilities. In Advances in External Control of Human Extremities, Dubrovnik

    Google Scholar 

  5. Romilly D P, Anglin C, Gosine R G, Hershler C and Raschke S U 1994 A Functional task analysis and motion simulation for the development of powered upper-limb orthosis. IEEE Transactions on Rehabilitation Engineering Vol 2(3): 119–129

    Article  Google Scholar 

  6. Rahman T, Ramanathan R, Seliktar R, Harwin W S 1995 A Simple Technique to Passively Gravity-Balance Articulated Mechanisms. Journal of Mechanical Design Vol. 117: 655–658

    Google Scholar 

  7. Yardley A, Parrini G, Carus D, Thorpe J 1997 Development of an Upperlimb Orthotic Exercise System. ICORR'97, Bath: 59–62

    Google Scholar 

  8. Jonson G R, Buckley M A 1997 Development of a New Motorised Upper Limb Orthotic System. RESNA'97 June 20–24: 399–401

    Google Scholar 

  9. Krebs H I, Hogan N, Aisen M L, Volpe B T 1998 Robot-Aided Neurorehabilitation. IEEE Transactions on Rehabilitation Engineering Vol. 6, NO.l: 75–86

    Article  Google Scholar 

  10. Lum P S, Lehman S L, Reinkensmeyer D J 1995 The Bimanual Lifting Rehabilitator: An Adaptive Machine for the Therapy of Stroke Patients. IEEE Transactions on Rehabilitation Engineering Vol. 3 No.2: 166–173

    Article  Google Scholar 

  11. Hogan N 1985 Impedance Control: An Approach to Manipulation. Journal of Dynamic Systems: Measurement and Control Vol 107: 1–24

    Article  MATH  Google Scholar 

  12. Harwin W S, Leiber L O, Austwick G P G, Dislist C 1998 Clinical potential and design of programmable mechanical impedances for orthotic applications. J Robotica Vol. 16: 68–76

    Google Scholar 

  13. Bennett D J Hollerbach J M Xu Y, and Hunter I W 1992 Time-varying stiffness of human elbow joint during cyclic voluntary movement. Experimental Brain Research Vol 88: 433–442

    Article  Google Scholar 

  14. Bätge J 1997 Auslegung von Band-und Seilantrieben für die Handhabungstechnik Konstruktion 49 H.9: 21–24. Springer-VDI Verlag

    Google Scholar 

  15. Feyrer K 1998 Lebensdauer-Vorhersage von laufenden Drahtseilen. Konstruktion 50 H. 4: 51–52. Springer-VDI Verlag

    Google Scholar 

  16. Pfeifer H 4th edition Grundlagen der Fördertechnik. Vieweg&Sohn, Braunschweig

    Google Scholar 

  17. Soderstrom T and Stoica P 1989 System Identification. Prentice Hall, ISBN 0138812365

    Google Scholar 

  18. P.A. Prokopiou, W S Harwin, and S G Tzafestas 1998 Exploiting a human arm model for fast intuitive and time-delay-robust telemanipulation. In: Tzafestas S G (ed): Advances in Manufacturing: Decision, Control and Information Technology, Springer, 255–265, In Press

    Google Scholar 

  19. Grandjean E 1980 Fitting the task to the Man. Taylor & Francis Ltd., London

    Google Scholar 

  20. Sanders M S, McCormick E J 1993 Human Factors in Engineering and Design. Seventh Edition. McCraw-Hill Book Company, London

    Google Scholar 

Download references

Authors

Editor information

S. G. Tzafestas PhD G. Schmidt PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Süssemilch, I., Harwin, W.S. (1999). Design of an active arm support for assisting arm movements. In: Tzafestas, S.G., Schmidt, G. (eds) Progress in system and robot analysis and control design. Lecture Notes in Control and Information Sciences, vol 243. Springer, London. https://doi.org/10.1007/BFb0110562

Download citation

  • DOI: https://doi.org/10.1007/BFb0110562

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-123-8

  • Online ISBN: 978-1-84628-535-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics