Skip to main content

High-gain observers in nonlinear feedback control

  • Part II Output Feedback Control Design
  • Conference paper
  • First Online:
New Directions in nonlinear observer design

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 244))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Aldhaheri and H. K. Khalil. Effect of unmodeled actuator dynamics on output feedback stabilization of nonlinear systems. Automatica, 32(9):1323–1327, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Aloliwi and H.K. Khalil. Adaptive output feedback regulation of a class of nonlinear systems: convergence and robustness. IEEE Trans. Automat. Contr., 42:1714–1716, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Aloliwi and H.K. Khalil. Robust adaptive output feedback control of nonlinear systems without persistence of excitation. Automatica, 33:2025–2032, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Aloliwi and H.K. Khalil. Robust adaptive control of nonlinear systems with unmodeled dynamics. In Proc. IEEE Conf. on Decision and Control, pages 2872–2873, Tampa, FL, December 1998.

    Google Scholar 

  5. B. Aloliwi, H.K. Khalil, and E.G. Strangas. Robust speed control of induction motors. In Proc. American Control Conf., Albuquerque, NM, June 1997. WP16:4.

    Google Scholar 

  6. B. Aloliwi, H.K. Khalil, and E.G. Strangas. Robust speed control of induction motors: application to a benchmark example. 1998. Submitted for publication.

    Google Scholar 

  7. J. Alvarez-Ramirez, J. Alvarez, and R. Suárez. Robust PI control of a class of nonlinear systems. 1998. Submitted for publication.

    Google Scholar 

  8. A. N. Atassi and H. K. Khalil. A separation principle for the control of a class of nonlinear systems. In Proc. IEEE Conf. on Decision and Control, pages 855–860, Tampa, FL, December 1998.

    Google Scholar 

  9. A. N. Atassi and H. K. Khalil. Separation results for the stabilization of nonlinear systems using different high-gain observer designs. 1998. Submitted for publication.

    Google Scholar 

  10. A.N. Atassi and H.K. Khalil. A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Contr., 44, 1999. To appear. See also Proc. European Control Conf., Brussels, July 1997. WE-A-A-4.

    Google Scholar 

  11. A. Dabroom and H.K. Khalil. Discrete-time implementation of high-gain observers for numerical differentiation. Int. J. Contr., 1999. To appear.

    Google Scholar 

  12. J.C. Doyle and G. Stein. Robustness with observers. IEEE Trans. Automat. Contr., AC-24(4):607–611, 1979.

    Article  MathSciNet  Google Scholar 

  13. F. Esfandiari and H.K. Khalil. Observer-based design of uncertain systems: recovering state feedback robustness under matching conditions. In Proc. Allerton Conf., pages 97–106, Monticello, IL, September 1987.

    Google Scholar 

  14. F. Esfandiari and H.K. Khalil. Output feedback stabilization of fully linearizable systems. Int. J. Contr., 56:1007–1037, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. B.A. Francis and K. Glover. Bounded peaking in the optimal linear regulator with cheap control. IEEE Trans. Automat. Contr., AC-23(4):608–617, 1978.

    Article  Google Scholar 

  16. J.P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlinear systems application to bioreactors. IEEE Trans. Automat. Contr., 37(6):875–880, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Isidori. Nonlinear Control Systems. Springer-Verlag, New York, 3rd edition, 1995.

    MATH  Google Scholar 

  18. A. Isidori. A remark on the problem of semiglobal nonlinear output regulation. IEEE Trans. Automat. Contr., 42(12):1734–1738, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Jankovic. Adaptive output feedback control of nonlinear feedback linearizable systems. Int. J. Adaptive Control and Signal Processing, 10:1–18, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Jankovic. Adaptive nonlinear output feedback tracking with a partial high-gain observer and backstepping. IEEE Trans. Automat. Contr., 42(1):106–113, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  21. Z.P. Jiang, D.J. Hill, and Y. Guo. Semi-global output feedback stabilization for the nonlinear benchmark example. In Proc. European Control Conf., Brussels, July 1997. FR-A-K-8.

    Google Scholar 

  22. H.K. Khalil. Robust servomechanism output feedback controllers for a class of feedback linearizable systems. Automatica, 30(10):1587–1599, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. H.K. Khalil. Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans. Automat. Contr., 41(2):177–188, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.K. Khalil. Universal regulators for minimum phase nonlinear systems. In Proc. American Control Conf., Philadelphia, PA, June 1998.

    Google Scholar 

  25. H.K. Khalil. On the design of robust servomechanisms for minimum phase nonlinear systems. In Proc. IEEE Conf. on Decision and Control, pages 3075–3080, Tampa, FL, December 1998.

    Google Scholar 

  26. H.K. Khalil and F. Esfandiari. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Automat. Contr., 38(9):1412–1415, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  27. H.K. Khalil and A. Saberi. Adaptive stabilization of a class of nonlinear systems using high-gain feedback. IEEE Trans. Automat. Contr., AC-32(11):1031–1035, 1987.

    Article  MathSciNet  Google Scholar 

  28. H.K. Khalil and E.G. Strangas. Robust speed control of induction motors using position and current measurement. IEEE Trans. Automat. Contr., 41:1216–1220, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Kimura. A new approach to the perfect regulation and the bounded peaking in linear multivariable control systems. IEEE Trans. Automat. Contr., AC-26(1):253–270, 1981.

    Article  Google Scholar 

  30. P.V. Kokotovic, H.K. Khalil, and J. O'Reilly. Singular Perturbations Methods in Control: Analysis and Design. Academic Press, New York, 1986.

    Google Scholar 

  31. P.V. Kokotovic and R. Marino. On vanishing stability regions in nonlinear systems with high-gain feedback. IEEE Trans. Automat. Contr., AC-31(10):967–970, 1986.

    Article  MathSciNet  Google Scholar 

  32. M. Krstic, P.V. Kokotovic, and I. Kanellakopoulos. Adaptive nonlinear output-feedback control with an observer-based identifier. In Proc. American Control Conf., pages 2821–2825, San Francisco, CA, June 1993.

    Google Scholar 

  33. K.W. Lee and H.K. Khalil. Adaptive output feedback control of robot manipulators using high-gain observers. Int. J. Contr., 67(6):869–886, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. Lin and C. Qian. Semiglobal robust stabilization of nonlinear systems by partial state and output feedback. In Proc. IEEE Conf. on Decision and Control, pages 3105–3110, Tampa, FL, December 1998.

    Google Scholar 

  35. Z. Lin and A. Saberi. Robust semi-global stabilization of minimum-phase input-output linearizable systems via partial state and output feedback. IEEE Trans. Automat. Contr., 40(6):1029–1041, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  36. M.S. Mahmoud and H.K. Khalil. Robustness of high-gain observer-based nonlinear controllers to unmodeled actuators and sensors. 1998. Submitted for publication.

    Google Scholar 

  37. N.A. Mahmoud and H.K. Khalil. Asymptotic regulation of minimum phase nonlinear systems using output feedback. IEEE Trans. Automat. Contr., 41(10):1402–1412, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  38. N.A. Mahmoud and H.K. Khalil. Robust control for a nonlinear servomechanism problem. Int. J. Contr., 66(6):779–802, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Mita. On zeros and responses of linear regulators and linear observers. IEEE Trans. Automat. Contr., AC-22(3):423–428, 1977.

    Article  MathSciNet  Google Scholar 

  40. Y. Miyasato. A simple redesign of model reference adaptive control system and its robustness. In Proc. IEEE Conf. on Decision and Control, pages 2880–2885, Tampa, FL, December 1998.

    Google Scholar 

  41. S. Nicosia and A. Tornambé. High-gain observers in the state and parameter estimation of robots having elastic joints. Systems Contr. Lett., 19:331–337, 1993.

    Google Scholar 

  42. S. Oh and H.K. Khalil. Output feedback stabilization using variable structure control. Int. J. Contr., 62:831–848, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  43. S. Oh and H.K. Khalil. Nonlinear output feedback tracking using high-gain observer and variable structure control. Automatica, 33:1845–1856, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  44. I.R. Petersen and C.V. Holot. High-gain observers applied to problems in disturbance attenuation, H-infinity optimization and the stabilization of uncertain linear systems. In Proc. American Control Conf., pages 2490–2496, Atlanta, GA, June 1988.

    Google Scholar 

  45. V.N. Polotskii. On the maximal errors of an asymptotic state identifier. Automation and Remote Control, 11:1116–1121, 1979.

    Google Scholar 

  46. L. Praly and Z.P. Jiang. Further results on robust semiglobal stabilization with dynamic input uncertainties. In Proc. IEEE Conf. on Decision and Control, pages 891–896, Tampa, FL, December 1998.

    Google Scholar 

  47. A. Saberi and P. Sannuti. Observer design for loop transfer recovery and for uncertain dynamical systems. IEEE Trans. Automat. Contr., 35(8):878–897, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Saberi B.M. Chen and P. Sannuti. Loop Transfer Recovery: Analysis and Design. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  49. A. Scrrani and A. Isidori. Robust output regulation for a class of non-minimum phase systems. In Proc. IEEE Conf. on Decision and Control, pages 867–872, Tampa, FL, December 1998.

    Google Scholar 

  50. S. Seshagiri and H.K. Khalil. Output feedback control of nonlinear systems using RBF neural networks. 1998. Submitted for publication.

    Google Scholar 

  51. E.G. Strangas, H.K. Khalil, B. Aloliwi, L. Laubinger, and J. Miller. Robust tracking controllers for induction motors without rotor position sensor: analysis and experimental results. IEEE Trans. Energy Conversion 1999. To appear.

    Google Scholar 

  52. H.J. Sussmann and P.V. Kokotovic. The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. Automat. Contr., 36(4):424–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  53. A. Teel and L. Praly. Global stabilizability and observability imply semi-global stabilizability by output feedback. Systems Contr. Lett., 22:313–325, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Teel and L. Praly. Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control & Optimization, 33:1443–1488, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. Tornambé. Output feedback stabilization of a class of non-minimum phase nonlinear systems. Systems Contr. Lett., 19:193–204, 1992.

    Article  MATH  Google Scholar 

  56. T. Zhang, S.S. Ge, and C.C. Hang. Adaptive output feedback control for general nonlinear systems using multilayer neural networks. In Proc. American Control Conf., pages 520–524, Philadelphia, June 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Nijmeijer T.I. Fossen

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Khalil, H.K. (1999). High-gain observers in nonlinear feedback control. In: Nijmeijer, H., Fossen, T. (eds) New Directions in nonlinear observer design. Lecture Notes in Control and Information Sciences, vol 244. Springer, London. https://doi.org/10.1007/BFb0109930

Download citation

  • DOI: https://doi.org/10.1007/BFb0109930

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-134-4

  • Online ISBN: 978-1-84628-536-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics