Skip to main content

Electronic structure of impurities in transition metals

  • Chapter
  • First Online:
Festkörperprobleme 21

Part of the book series: Advances in Solid State Physics ((ASSP,volume 21))

Abstract

We give a review of the recent theoretical development in our understanding of defects in metals. First we summarize the methods and models used for the theoretical description of point defects. In detail we discuss then the KKR-Green's function method which is suited to describe defects in transition metals as well as in simple metals. Calculations based on this method will be presented for: virtual bound states of 3d-impurities in Cu and Al, magnetic 3d-impurities in Cu, Ag and Al, sp-impurities in Al and Cu and impurities in ferromagnetic Ni. We give results for the local densities of states and for the magnetic moments of the impurities and compare them with the available experimental information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Mackintosh and O. K. Andersen, The Electronic Structure of Transition Metals, in: Electrons at the Fermi Surface ed. M. Springford, Cambridge University Press Cambridge 1980.

    Google Scholar 

  2. V. L. Moruzzi, J. F. Janak and A. R. Williams, Calculated Electronic Properties of Metals, Pergamon Press, New York 1978 V. L. Moruzzi, A. R. Williams and J. F. Janak Phys. Rev. B 15, 2854 (1977).

    Google Scholar 

  3. P. Thiry, D. Chandesris, L. Lecante, C. Guillot, R. Pinchaux and Y. Pétroff, Phys. Rev. Lett. 43, 82 (1979).

    Article  ADS  Google Scholar 

  4. E. Dietz, U. Gerhardt and C. J. Maetz, Phys. Rev. Lett. 40, 892 (1978).

    Article  ADS  Google Scholar 

  5. D. Eastman, H. J. Himpsel and J. A. Knapp, Phys. Rev. Lett. 40, 1514 (1978).

    Article  ADS  Google Scholar 

  6. N. Mårtenson and B. Johansson, Solid State Comm. 32, 791 (1979).

    Article  Google Scholar 

  7. C. P. Flynn, J. Phys. F 10, L 315 (1980).

    Article  ADS  Google Scholar 

  8. Z. D. Popovic, M. J. Stott, J. P. Carbotte and G. R. Piercy, Phys. Rev. B 13, 590 (1976).

    Article  ADS  Google Scholar 

  9. C. O. Almbladh, U. von Barth, Z. D. Popovic and M. J. Stott, Phys. Rev. B 14, 2250 (1976).

    Article  ADS  Google Scholar 

  10. E. Zaremba, L. M. Sanders, H. B. Shore and J. H. Rose, J. Phys. F 7, 1763 (1977).

    Article  ADS  Google Scholar 

  11. M. Manninen, P. Hautojarvi and K. Nieminen, Solid State Comm. 23, 795 (1977).

    Article  ADS  Google Scholar 

  12. J. N. Norskov, Phys. Rev. B 20, 446 (1979).

    Article  ADS  Google Scholar 

  13. P. Jena and K. S. Singwi, Phys. Rev. B 17, 1592 (1978). Phys. Rev. B 17, 3518 (1978).

    Article  ADS  Google Scholar 

  14. R. Nieminen, M. Manninen, P. Hautojärvi and J. Arponen, Solid State Comm. 16, 831 (1975).

    Article  ADS  Google Scholar 

  15. C. O. Almbladh and V. von Barth, Phys. Rev. B 13 3307 (1976).

    Article  ADS  Google Scholar 

  16. M. Manninen and R. M. Nieminen, J. Phys. F 9, 1333 (1979).

    Article  ADS  Google Scholar 

  17. R. M. Nieminen and M. Puska, J. Phys. F10, L 123 (1980).

    Article  ADS  Google Scholar 

  18. L. M. Kahn, F. Perrot and M. Rasolt, Phys. Rev. B21, 5594 (1980).

    Article  ADS  Google Scholar 

  19. G. Solt, Phys. Rev. B18, 720 (1978); G. Solt and K. Werner, Helv. Phys. Acta 1981 (in press).

    Article  ADS  Google Scholar 

  20. K. H. Johnson, J. Chem. Phys. 45, 3085 (1966). K. H. Johnson, in: Advances in Quantum Chemistry Vol. 7, p. 143, ed. P. O. Löwdin, New York, Academic Press 1977.

    Article  ADS  Google Scholar 

  21. K. Schwarz and N. Rösch, J. Phys. C9, L 433 (1976).

    Article  ADS  Google Scholar 

  22. Chr. Müller, G. Seifert, G. Lautenschläger, H. Worm, P. Ziesche and E. Mrosan, phys. stat. sol (b) 91, 605 (1979).

    Article  ADS  Google Scholar 

  23. H. Adachi and S. Imoto, J. Phys. Soc. Jap. 46, 1194 (1979).

    Article  ADS  Google Scholar 

  24. K. H. Johnson, D. D. Vvedensky and R. P. Messmer, Phys. Rev. B19, 1519 (1979).

    Article  ADS  Google Scholar 

  25. J. Harris and R. O. Jones, J. Chem. Phys. 68, 1190 (1978); 68, 3316 (1978).

    Article  ADS  Google Scholar 

  26. O. Gunnarsson and R. O. Jones, Phys. Scr. 21, 394 (1980).

    Article  ADS  Google Scholar 

  27. V. Heine, D. Bullet, R. Haydock and M. J. Kelly, Solid State Physics, Vol. 35, ed. H. Ehrenreich et al., Academic Press, New York 1980.

    Google Scholar 

  28. P. Lloyd and P. V. Smith, Adv. in Phys. 21, 69 (1972).

    Article  ADS  Google Scholar 

  29. D. B. B. Rijsenbrij and A. Lodder, J. Phys. F6, 1053 (1976).

    Article  ADS  Google Scholar 

  30. G. Ries and H. Winter, J. Phys. F9, 1589 (1979).

    Article  ADS  Google Scholar 

  31. G. Ries and H. Winter, J. Phys. F10, 1 (1980).

    Article  ADS  Google Scholar 

  32. A. Lodder and P. J. Braspenning, J. Phys. F10, 2259 (1980).

    Article  ADS  Google Scholar 

  33. P. J. Braspenning and A. Lodder, J. Phys. F11, 79 (1981).

    Article  ADS  Google Scholar 

  34. G. Zwicknagel, Z. Physik B 40, 23; B 40, 31 (1980/81).

    Article  ADS  Google Scholar 

  35. W. John and W. Keller, J. Phys. F 7, L 223 (1977).

    Article  ADS  Google Scholar 

  36. R. Lenk, phys. stat. sol (b) 86, 603 (1978).

    Article  ADS  Google Scholar 

  37. C. E. van Dijkum, Thesis, Amsterdam 1980.

    Google Scholar 

  38. J. D. Joannopoulos and F. Yndurain, Phys. Rev. B 10, 5164 (1974).

    Article  ADS  Google Scholar 

  39. R. P. Gupta and R. W. Siegel, Phys. Rev. Lett. 39, 1212 (1977).

    Article  ADS  Google Scholar 

  40. R. P. Gupta and R. W. Siegel, Phys. Rev. B 22, 4572 (1980).

    Article  ADS  Google Scholar 

  41. G. F. Koster and J. C. Slater, Phys. Rev. 94, 1392 (1954); 95, 1165 (1954).

    Article  ADS  Google Scholar 

  42. J. Callaway, J. Math. Phys. 5, 783 (1964); Phys. Rev. 154, 515 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Callaway and A. Hughes, Phys. Rev. 156, 860 (1967); 164, 1043 (1967).

    Article  ADS  Google Scholar 

  44. R. Riedinger, J. Phys. F 1, 392 (1971).

    Article  ADS  Google Scholar 

  45. C. L. Cook and P. V. Smith, J. Phys. F 4, 1344 (1974).

    Article  ADS  Google Scholar 

  46. J. C. Parlebas, J. Phys. F 4, 1392 (1974).

    Article  ADS  Google Scholar 

  47. C. A. Sholl and P. V. Smith, J. Phys. F 10, 811 (1980).

    Article  ADS  Google Scholar 

  48. G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 41, 892 (1978).

    Article  ADS  Google Scholar 

  49. G. A. Baraff and M. Schlüter, Phys. Rev. B 19, 4965, (1979).

    Article  ADS  Google Scholar 

  50. J. Bernholc, N. O. Lipari and S. T. Pantelides, Phys. Rev. Lett. 41, 895 (1978).

    Article  ADS  Google Scholar 

  51. J. Bernholc, N. O. Lipari and S. T. Pantelides, Phys. Rev. B 21, 3545 (1980).

    Article  ADS  Google Scholar 

  52. S. P. Singhal and J. Callaway, Phys. Rev. B 19, 5049 (1979).

    Article  ADS  Google Scholar 

  53. T. H. Dupree, Ann. Phys. (N. Y.) 15, 63 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. J. L. Beeby, Proc. Roy. Soc. London, Ser. A 302, 113 (1967).

    Article  ADS  Google Scholar 

  55. J. Morgan, Proc. Roy. Soc. London, 16, 365 (1966).

    Article  Google Scholar 

  56. N. A. W. Holzwarth, Phys. Rev. B 11, 3718 (1975).

    Article  ADS  Google Scholar 

  57. G. Lehmann, phys. stat. sol (b) 70, 735 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  58. R. Harris, J. Phys. C 3, 172 (1970).

    Article  ADS  Google Scholar 

  59. M. Hamasaki, S. Asano and J. Yamashita, J. Phys. Soc. Jap. 41, 378 (1976).

    Article  ADS  Google Scholar 

  60. K. Terakura, J. Phys. Soc. Jap. 40, 450 (1976); J. Phys. F 6, 1385 (1976); Physica 91 B, 162 (1977).

    Article  ADS  Google Scholar 

  61. H. Katajama-Yoshida, K. Terakura and J. Kanamori, J. Phys. Soc. Jap. 48, 1504 (1980).

    Article  ADS  Google Scholar 

  62. H. Katajama-Yoshida, K. Terakura and J. Kanamori, J. Phys. Soc. Jap. 49, 973 (1980).

    ADS  Google Scholar 

  63. R. Zeller and P. H. Dederichs, Phys. Rev. Lett. 42, 1713 (1979).

    Article  ADS  Google Scholar 

  64. R. Zeller, R. Podloucky and P. H. Dederichs, Z. Physik B 38, 165 (1980).

    Article  ADS  Google Scholar 

  65. R. Podloucky, R. Zeller and P. H. Dederichs, Phys. Rev. B 22, 5777 (1980).

    Article  ADS  Google Scholar 

  66. P. Léonard and E. Daniel, paper presented at the conference Physics of Transition Metals, Leeds 1980.

    Google Scholar 

  67. P. Lloyd, Proc. Phys. Soc. London 90, 207 (1967).

    Article  ADS  Google Scholar 

  68. P. C. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  69. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  70. J. Friedel, J. Phys. Radium 19, 573 (1958); Suppl. Nuovo Cimento VII, 287 (1958).

    Article  Google Scholar 

  71. E. Mrosan and G. Lehmann, phys. stat. sol. (b) 78, 159 (1976).

    Article  ADS  Google Scholar 

  72. E. Mrosan and G. Lehmann, phys. stat. sol.(b) 87, K21 (1978).

    Article  ADS  Google Scholar 

  73. G. Lautenschläger and E. Mrosan, phys. stat. sol. (b) 91, 109 (1979); 96, 183 (1979).

    Article  ADS  Google Scholar 

  74. R. M. Nieminen and M. Puska, J. Phys. F 10, L 123 (1980).

    Article  ADS  Google Scholar 

  75. C. O. Almbladh and U. von Barth, Phys. Rev. B 13, 3307 (1976).

    Article  ADS  Google Scholar 

  76. J. Deutz, P. H. Dederichs and R. Zeller, J. Phys. F (1981).

    Google Scholar 

  77. P. Steiner, H. Höchst, W. Steffen and S. Hüfner, Z. Physik 38, 191 (1980).

    ADS  Google Scholar 

  78. P. J. Durham, D. Ghaleb, B. L. Gyorffy, C. F. Hague, J. M. Mariot, G. M. Stocks and W. M. Temmermann, J. Phys. F 9, 1719 (1979).

    Article  ADS  Google Scholar 

  79. L. Dagens, J. Phys. F 9, 45 (1979).

    Article  ADS  Google Scholar 

  80. P. W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  81. C. Norris and L. Walldén, Solid State Comm. 7, 99 (1969).

    Article  ADS  Google Scholar 

  82. L. Walldén, Philos. Mag. 21, 571 (1970).

    Article  ADS  Google Scholar 

  83. H. P. Myers, L. Walldén and A. Karlsson, Philos. Mag. 18, 725 (1968).

    Article  ADS  Google Scholar 

  84. M. R. Steel and D. M. Treherne, J. Phys. F 2, 199 (1972).

    Article  ADS  Google Scholar 

  85. H. Höchst, P. Steiner and S. Hüfner, Z. Physik B 38, 201 (1980).

    Article  ADS  Google Scholar 

  86. H. S. Rechal and P. T. Andrews, J. Phys. F 10, 1631 (1980).

    Article  ADS  Google Scholar 

  87. P. T. Andrews and L. T. Brown, in: Physics of Transition Metals 1980, p. 141, Conference Series Number 55, The Institute of Physics, Bristol and London.

    Google Scholar 

  88. P. J. Braspenning et al., to be published.

    Google Scholar 

  89. R. P. Gupta and R. Benedek, Phys. Rev. B 19, 583 (1979).

    Article  ADS  Google Scholar 

  90. K. Terakura, Phys. F 7, 1773 (1977).

    Article  ADS  Google Scholar 

  91. J. Kanamori, H. K. Yoshida and K. Terakura, in: Proceedings of International Conference on Hyperfine Interactions V, (Berlin 1980).

    Google Scholar 

  92. C. Norris and G. P. Williams, Phys. Status solidi (b) 85, 325 (1978).

    Article  ADS  Google Scholar 

  93. K. Y. Yu, J. N. Miller, P. Chye, W. E. Spicer, N. D. Lang and A. R. Williams, Phys. Rev. B 14, 1446 (1976).

    Article  ADS  Google Scholar 

  94. F. J. Himpsel, D. E. Eastman, E. E. Koch and A. R. Williams, Phys. Rev. B 22, 4604 (1980).

    Article  ADS  Google Scholar 

  95. O. Gunnarsson, in: Electrons in Disordered Metals and at Metallic Surfaces, Ed. P. Phariseau et al., Plenum N. Y., 1979.

    Google Scholar 

  96. J. C. Slater, Quantum Theory of Molecules and Solids, Vol. IV (McGraw Hill, New York, 1974).

    Google Scholar 

  97. J. Kanamori, J. Appl. Phys. 36, 929 (1965).

    Article  ADS  Google Scholar 

  98. I. A. Campbell and A. A. Gomèz, Proc. Phys. Soc. 91, 319 (1967).

    Article  ADS  Google Scholar 

  99. R. Zeller, in: Physics of Transition Metals 1980, p. 265. Conference Series Number 55, The Institute of Physics, Bristol and London.

    Google Scholar 

  100. H. Katayama, K. Terakura and J. Kanamori, J. Phys. Soc. Jap. 46, 822 (1979).

    Article  ADS  Google Scholar 

  101. J. Kanamori, H. K. Yoshida and K. Terakura, in: Proceedings of International Conference on Hyperfine Interactions V (Berlin, 1980) 49, 972 (1980).

    Google Scholar 

  102. C. P. Slichter, Principles of Magnetic Resonance (Haper and Row, 1963).

    Google Scholar 

  103. P. Steiner, S. Hüfner, N. Mårtenson and B. Johansson, Solid State Commun. 37, 73 (1981).

    Article  ADS  Google Scholar 

  104. P. Steiner and S. Hüfner, Solid State Commun. 37, 79 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Dederichs, P.H., Zeller, R. (1981). Electronic structure of impurities in transition metals. In: Treusch, J. (eds) Festkörperprobleme 21. Advances in Solid State Physics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108607

Download citation

  • DOI: https://doi.org/10.1007/BFb0108607

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08027-3

  • Online ISBN: 978-3-540-75368-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics