Skip to main content

Statistical physics of learning: Phase transitions in multilayered neural networks

  • Soft Materials
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

The statistical physics of disordered systems provides tools for the investigation of learning processes in adaptive information processing. The methods and objectives of this approach are exemplified in terms of a specific model scenario: the supervised learning of a rule with a multilayered neural network. The model exhibits a discontinuous dependence of the student performance on the number of example data. This phenomenon can be interpreted as a symmetry breaking phase transition, which results from the competition of (formal) energy and entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J.A. Hertz, A. Krogh R.G. Plamer, Introduction to the Theory of Neural Computation. (Addison-Wesley, Redwood City (CA) 1991).

    Google Scholar 

  2. C. Bishop, Neural Networks for Pattern Recognition. (Clarendon, Oxford, 1995).

    Google Scholar 

  3. M. Opper and W. Kinzel, in Models of Neural Networks III eds. E. Domany, J.L. van Hemmen, and K. Schulten, (Springer, Berlin 1996).

    Google Scholar 

  4. S. Seung, H. Sompolinsky, and N. Tishby, Phys. Rev. A 45, 6056 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. T.L.H. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phys. 65, 499 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. W. Kinzel, Phil. Mag. B 77, 1455 (1998).

    Article  ADS  Google Scholar 

  7. Y. Chauvin and D.E. Rumelhart (eds.), Backpropagation: Theory, Architecture, and Applications. (Lawrence Erlbaum, Hillsdale (NJ) 1995).

    Google Scholar 

  8. M. Biehl and H. Schwarze, J. Phys. A 28, 643 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. D. Saad and S.A. Solla, Phys. Rev. E 52, 4225 (1995).

    Article  ADS  Google Scholar 

  10. H. Schwarze and J. Hertz, Europhys. Lett. 21, 785 (1993).

    Article  ADS  Google Scholar 

  11. H. Schwarze, J. Phys. A 26, 5781 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. K. Kang, J.-H. Oh, C. Kwon, and Y. Park, Phys. Rev. E 48, 4805 (1993).

    Article  ADS  Google Scholar 

  13. R. Urbanczik, J. Phys A 28, 7097, (1995) and Phys. Rev. E 58, 2298 (1998).

    Article  MATH  ADS  Google Scholar 

  14. B. Schottky, J. Phys A 28, 4515 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. B. Schottky and U. Krey, J. Phys A 30, 8541 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. H. Schwarze, M. Opper, and W. Kinzel, Phys. Rev. A 46, R6185 (1992).

    Article  ADS  Google Scholar 

  17. M. Ahr, M. Biehl, and R. Urbanczik, Eur. Phys. J. B 10, 583 (1999).

    Article  ADS  Google Scholar 

  18. M. Biehl, E. Schlösser, and M. Ahr, Europhys. Lett. 44, 261 (1998).

    Article  ADS  Google Scholar 

  19. M. Ahr, M. Biehl, and R. Urbanczik, J. Phys. A. 32, L531 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. R. Dietrich, M. Opper, and H. Sompolinsky, Phys. Rev. Lett. 82, 2975 (1999).

    Article  ADS  Google Scholar 

  21. C. Marangi, M. Biehl, and S.A. Solla, Europhys. Lett. 30, 117 (1995).

    Article  ADS  Google Scholar 

  22. M. Biehl and A. Mietzner, Europhys. Lett. 24, 421 (1993).

    Article  ADS  Google Scholar 

  23. P. Reimann, C. Van den Broeck, and G.J. Bex, J. Phys. A 29, 3521 (1996).

    Article  MATH  ADS  Google Scholar 

  24. M. Biehl, P. Riegler, and C. Wöhler, J. Phys. A 29, 4769 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. D. Saad (ed.), On-line learning in neural networks. (Cambridge University Press, 1998).

    Google Scholar 

  26. M. Biehl and N. Caticha, in The Handbook of Brain Theory and Neural Networks, ed. M.A. Arbib, MIT Press (in press).

    Google Scholar 

  27. O. Kinouchi and N. Caticha, J. Phys. A 28, 6243 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Vicente and N. Caticha, J. Phys. A 30, L559 (1997).

    Article  Google Scholar 

  29. D. Saad and M. Rattray, Phys. Rev. Lett. 79, 2578 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Biehl, M., Ahr, M., Schlösser, E. (2000). Statistical physics of learning: Phase transitions in multilayered neural networks. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108398

Download citation

  • DOI: https://doi.org/10.1007/BFb0108398

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics