Skip to main content

Traversal time for tunneling

  • Tunneling
  • Chapter
  • First Online:
Festkörperprobleme 25

Part of the book series: Advances in Solid State Physics ((ASSP,volume 25))

Abstract

A variety of results have been proposed for the time taken by a tunneling particle for barrier traversal. We confirm one of the existing results by considering tunneling through a time-modulated barrier. At low modulation frequency the traversing particle sees an effectively static barrier. At high frequencies the particle tunnels through the time-averaged potential, but can do it inelastically, losing or gaining modulation quanta. The transition between the two regimes yields the traversal time. Estimates of this time are given for field-emission experiments, Zener tunneling and the tunneling of a Josephson junction circuit out of the superconducting state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1742 (1982); Physica Scripta (in press).

    Article  Google Scholar 

  2. M. Büttiker, Phys. Rev. B27, 6178 (1983).

    Article  ADS  Google Scholar 

  3. P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963).

    Article  ADS  Google Scholar 

  4. J. R. Tucker, IEEE Quantum Electron. QE-15, 1234 (1979).

    Article  ADS  Google Scholar 

  5. D. L. Haarig and R. Reifenberger, Phys. Rev. B26, 6408 (1982).

    Article  ADS  Google Scholar 

  6. M. Dzierzawa, Tunneln durch zeitabhängige Barrieren, (University of Karlsruhe, 1984).

    Google Scholar 

  7. E. O. Kane, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundquist, (Plenum Press, New York, 1969), p. 8.

    Google Scholar 

  8. G. 't Hoft, Phys. Rev. Lett. 37, 8 (1976). 't Hoft introduced the term instanton for the semiclassical trajectory connecting two degenerate minima.

    Article  ADS  Google Scholar 

  9. E. P. Wigner, Phys. Rev. 98, 145 (1955).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. T. E. Hartman J. Appl. Phys. 33, 3427 (1962).

    Article  ADS  Google Scholar 

  11. J. R. Fletcher, J. Phys. C18, 55 (1985).

    Article  ADS  Google Scholar 

  12. P. Schnupp, Thin Solid Films 2, 177 (1968).

    Article  ADS  Google Scholar 

  13. A. Goldberg, H. M. Schey and J. L. Schwartz, Am. J. Phys. 35, 177 (1967).

    Article  ADS  Google Scholar 

  14. K. W. H. Stevens, Eur. J. Phys. 1, 98 (1980).

    Article  MathSciNet  Google Scholar 

  15. K. W. H. Stevens, J. Phys. C16, 3649, (1983).

    Article  ADS  Google Scholar 

  16. H. Thomas, University of Basel, unpublished.

    Google Scholar 

  17. F. T. Smith, Phys. Rev. 188, 349 (1960).

    Article  ADS  Google Scholar 

  18. A. I. Baz', Sov. J. Nucl. Phys. 4, 182 (1967), and 5, 161 (1967).

    Google Scholar 

  19. V. F. Rybachenko, Sov. J. Nucl. Phys. 5, 635 (1967).

    Google Scholar 

  20. E. Pollak and W. H. Miller, Phys. Rev. Lett. 53, 115 (1984).

    Article  ADS  Google Scholar 

  21. A. Hartstein, Z. A. Weinberg, and D. J. Di Maria, Phys. Rev. B 25, 7174 (1982).

    Article  ADS  Google Scholar 

  22. H. Hübner, Untersuchung der Feldemission bei Frequenzen zwischen 12 und 18 GHz, thesis, (University of Karlsruhe, 1982).

    Google Scholar 

  23. G. Binnig, N. Garcia, H. Rohrer, J. M. Soler and F. Flores, Phys. Rev. B30, 4816 (1984).

    Article  ADS  Google Scholar 

  24. M. Jonson Solid State Commun. 33 743 (1980).

    Article  ADS  Google Scholar 

  25. A. O. Caldeira and A. J. Leggett, Ann. Phys. (N. Y.) 149, 374 (1983); R. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265 (1981).

    Article  ADS  Google Scholar 

  26. U. Weiss, P. Riseborough, P. Hänggi and H. Grabert, Phys. Lett. 104A, 10 (1984).

    ADS  Google Scholar 

  27. R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London), A119, 173 (1928).

    Article  ADS  Google Scholar 

  28. C. Zener, Proc. Roy. Soc. (London), A145, 523 (1943). The r. h. s. of Eq. (7) of this paper is too large by a factor 2. See also C. B. Duke, Tunneling in Solids (Academic Press, New York 1969), p. 44.

    Article  ADS  Google Scholar 

  29. M. Büttiker, E. P. Harris and R. Landauer, Phys. Rev. B28, 1268 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Büttiker, M., Landauer, R. (1985). Traversal time for tunneling. In: Grosse, P. (eds) Festkörperprobleme 25. Advances in Solid State Physics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108208

Download citation

  • DOI: https://doi.org/10.1007/BFb0108208

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08031-0

  • Online ISBN: 978-3-540-75361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics