Skip to main content

Resonant Brillouin scattering in semiconductors

  • Chapter
  • First Online:
Festkörperprobleme 18

Part of the book series: Advances in Solid State Physics ((ASSP,volume 18))

Abstract

The exciton-polariton resonance in Brillouin scattering makes this type of light scattering an ideal probe for (i) the investigation of polariton dispersion curves and (ii) the exciton-phonon interaction. The peculiar kinematics of resonant Brillouin scattering allow the practice of k-space spectroscopy near k=0 and the precise determination of exciton parameters. The light scattering intensities give insight into the microscopic nature of the coupling of the phonons to the electronic states which determine the optical properties of semiconductors. Experimental Brillouin spectra in the vicinity of the lowest excitons in direct gap III–V and II–VI semiconductors are analyzed in the context of the polariton scattering concept introduced by Hopfield. The connection between multiple (elastic and inelastic) scattering of polaritons, their fluorescence and the phenomenon of exciton absorption is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Brenig, R. Zeyher, and J. L. Birman, Phys. Rev. B6, 4617 (1972).

    Article  ADS  Google Scholar 

  2. For the surface exciton-polariton problem, see: J. Lagois, this volume.

    Google Scholar 

  3. D. Fröhlich, E. Mohler, and P. Wiesner, Phys. Rev. Letters 26, 554 (1971).

    Article  ADS  Google Scholar 

  4. N. Nagasawa, N. Nakata, Y. Doi and M. Ueta, J. Phys. Soc. Japan 39, 987 (1975).

    Article  ADS  Google Scholar 

  5. A. S. Pine, in Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1975), Chap. 6.

    Google Scholar 

  6. J. R. Sandercok in Festkörperprobleme XV, edited by H. J. Queisser, (Vieweg, Braunschweig, 1975), p. 183.

    Chapter  Google Scholar 

  7. a)A. Pinczuk and E. Burstein, ibid. 5 in, Chap. 2 b)R. M. Martin and L. M. Falicov, ibid., Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1975), Chap. 3.

    Google Scholar 

  8. W. Richter, R. Zeyher, in Festkörperprobleme XVI, edited by J. Treusch (Vieweg, Braunschweig, 1976), p. 15.

    Chapter  Google Scholar 

  9. J. J. Hopfield, Phys. Rev. 112, 1555 (1958); S. I. Pekar, Soviet Phys. JETP 6, 785 (1958).

    Article  MATH  ADS  Google Scholar 

  10. V. M. Agranovitch and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons (Interscience, London, 1966), Chap. 3.

    Google Scholar 

  11. R. R. L. Zucca, J. P. Walter, Y. R. Shen and M. L. Cohen, Solid State Commun. 8, 627 (1970).

    Article  ADS  Google Scholar 

  12. see e.g.: J. O. Dimmock, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1967), Vol. III, p. 259.

    Google Scholar 

  13. M. Altarelli, N. O. Lipari, Phys. Rev. B15, 4898 (1977).

    Article  ADS  Google Scholar 

  14. J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563 (1963).

    Article  ADS  Google Scholar 

  15. J. J. Hopfield, J. Phys. Soc. Japan 21, Suppl., p., 77, (1966).

    Google Scholar 

  16. J. J. Hopfield, Phys. Rev. 182, 945 (1969).

    Article  ADS  Google Scholar 

  17. Dye Lasers edited by F. P. Schäfer (Springer, Berlin, 1973).

    Google Scholar 

  18. R. G. Ulbrich and C. Weisbuch, Phys. Rev. Letters, 38, 865 (1977).

    Article  ADS  Google Scholar 

  19. R. G. Ulbrich and C. Weisbuch, unpublished results.

    Google Scholar 

  20. C. Weisbuch and R. G. Ulbrich, Proc. Int. Conf. on Lattice Dynamics., Paris 1977, ed. M. Balkanski (Flammarion, Paris, 1978) p. 167.

    Google Scholar 

  21. E. O. Kane, Phys. Rev. B11, 3850 (1975).

    Article  ADS  Google Scholar 

  22. G. Fishman, to be published.

    Google Scholar 

  23. G. D. Mahan and J. J. Hopfield, Phys. Rev. 135, A428 (1964).

    Article  ADS  Google Scholar 

  24. G. Winterling and E. Koteles, Solid State Commun. 23, 95 (1977).

    Article  ADS  Google Scholar 

  25. G. Winterling, E. S. Koteles, and M. Cardona, Phys. Rev. Letters 39, 1286 (1977).

    Article  ADS  Google Scholar 

  26. G. Winterling and E. S. Koteles, ibid. 20, p. 170.

    Google Scholar 

  27. P. Y. Yu and F. Evangelisti, Bull. Am. Phys. Soc. 23, 389 (1978).

    Google Scholar 

  28. A. I. Anselm and I. A. Firsov, Soviet Physics JETP 1, 139 (1955).

    Google Scholar 

  29. R. M. Martin Phys. Rev. B4, 3676 (1971); P. P. Lottici and C. Razetti, Solid State Commun. 25, 427 (1978).

    Article  ADS  Google Scholar 

  30. See, e. g.: M. Cardona, Modulation Spectroscopy, Suppl. 11, Solid State Physics, eds. F. Seitz, D. Turnbull, H. Ehrenreich, (Academic Press, New York, 1969) Chap. 6.

    Google Scholar 

  31. Y. Toyozawa, Progr. Theoretical Physics, Suppl. 12, 111 (1959).

    Article  ADS  Google Scholar 

  32. H. J. G. Meijer and D. Polder, Physica 19, 255 (1953).

    Article  MATH  ADS  Google Scholar 

  33. B. Gerlach and J. Pollmann, phys. stat. sol. (b) 67, 93 (1975) and ibid. 67, 477 (1975).

    Article  ADS  Google Scholar 

  34. R. Loudon, J. Phys. 26, 677 (1965).

    Google Scholar 

  35. At the lattice temperatures discussed here one has Nq/Nq+1≤1.2 in equilibrium. Deviations from phonon equilibrium are improbable under the given excitation power densities.

    Google Scholar 

  36. Ref. 20 contains a numerical error in the computation of vg. The correct value of vg at 0.5 meV below ET is 4.7×107 cm/s. This leads to a theoretical understimate (∼factor 0.2) of the actually measured efficiency.

    Google Scholar 

  37. H. Sumi, J. Phys. Soc. Japan 41, 526 (1976).

    Article  ADS  Google Scholar 

  38. C. Weisbuch and R. G. Ulbrich, Phys. Rev. Letters 39, 654 (1977).

    Article  ADS  Google Scholar 

  39. Y. R. Shen, Phys. Rev. B9, 622 (1974).

    Article  ADS  Google Scholar 

  40. P. Y. Yu and J. E. Smith, jr. Phys. Rev. Letters 37, 622 (1976).

    Article  ADS  Google Scholar 

  41. see, e. g.: W. C. Tait, Phys. Rev. B5, 648 (1972) and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Egler and H. Haken, Z. Physik B28, 51 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  43. see, e. g.: J. Voigt, phys. stat. sol. (b) 64, 549 (1974).

    Article  ADS  Google Scholar 

  44. A. Bosacchi, B. Bosacchi, and S. Franchi, Phys. Rev. Letters 36, 1086 (1976).

    Article  ADS  Google Scholar 

  45. J. M. Besson, R. Le Toullec, and N. Piccioli, Phys. Rev Letters 39, 671 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Ulbrich, R.G., Weisbuch, C. (1978). Resonant Brillouin scattering in semiconductors. In: Treusch, J. (eds) Festkörperprobleme 18. Advances in Solid State Physics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107783

Download citation

  • DOI: https://doi.org/10.1007/BFb0107783

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08024-2

  • Online ISBN: 978-3-540-75362-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics