Skip to main content

Optical properties of localized excitons in nanostructures: Theoretical aspects

  • Conference paper
  • First Online:
Advances in Solid State Physics 38

Part of the book series: Advances in Solid State Physics ((ASSP,volume 38))

Abstract

A detailed description of excitonic spectra in semiconductor nanostructures needs to take into account roughness-induced disorder. Results are presented for a kinetic equation, which is formulated in terms of disorder eigenstates and includes phonon relaxation and radiative exciton, decay. Depending on the excitation scheme, the solutions describe photoluminescence, photoluminescence excitation spectroscopy, or absorption. Their dependence on time, temperature, disorder strength, and spatial resolution can be studied. Spatially resolved spectra turn out to be particularly interesting: Their autocorrelation contains information on the spatial extension of the wave functions, which is otherwise inaccessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Proc. 23nd ICPS Berlin, ed. M. Scheffler and R. Zimmermann. (World Scientific Publ. Co., Singapore, 1996).

    Google Scholar 

  2. MRS Bulletin, February 1998: Semiconductor Quantum Dots.

    Google Scholar 

  3. J. Ding, H. Leon, T. Ishihara, M. Hagerott, A.V. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, Phys. Rev. Lett 69, 1707 (1992).

    Article  ADS  Google Scholar 

  4. R. Zimmermann, F. Große, and E. Runge, Pure & Appl. Chem. 69, 1179 (1997).

    Article  Google Scholar 

  5. R. Zimmermann, E. Runge, and F. Große, in [1]. p. 511.

    Google Scholar 

  6. S. Glutsch, D. S. Chemla, and F. Bechstedt, Phys. Rev. B 54, 11592 (1996).

    Article  ADS  Google Scholar 

  7. ARPACK Package by D. Sorensen, R. Lehoucq, and Chao Yang, available from NetLIB at AT&T and ORNL.

    Google Scholar 

  8. D. S. Citrin, Phys. Rev. B 47, 3832 (1993).

    Article  ADS  Google Scholar 

  9. U. Bockelmann, Phys. Rev. B 48, 17637 (1993).

    Article  ADS  Google Scholar 

  10. L. C. Andreani, F. Bassani, and F. Tassone, in Optics of Excitons in Confined Systems, p. 25. (IOP Conference Series Number 123, ed., A. D’Andrea, R. Del Sole, R. Girlanda, and A. Quattropani, Bristol 1992).

    Google Scholar 

  11. M. Schreiber in K. H. Hoffmann and M. Schreiber, Ed., Computational Physics, (Springer, Berlin, 1996), p. 147.

    Google Scholar 

  12. Al. L. Efros, C. Wetzel, and J. M. Worlock, Phys. Rev. B 52, 8384 (1995).

    Article  ADS  Google Scholar 

  13. H.F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994).

    Article  ADS  Google Scholar 

  14. M. L. Mehta, Random Matrices, 2. ed. (Academic Press, San Diego, 1990).

    Google Scholar 

  15. T. Guhr, A. Müller-Groeling, and H. Weidenmüller, Random Matrix Theories in Quantum Physics: Common Concepts. preprint cond-mat/9707301, submitted to Physics Reports.

    Google Scholar 

  16. E. Runge, and R. Zimmermann, phys. stat. solidi (b) 206, 167 (1998).

    Article  ADS  Google Scholar 

  17. T. Takagahara, Phys. Rev. B 31, 6552 (1985).

    Article  ADS  Google Scholar 

  18. R. Zimmermann, and E. Runge, phys. stat. solidi (a), 164, 511 (1997).

    Article  ADS  Google Scholar 

  19. F. Yang, M. Wilkinson, E. J. Austin, and K. P. O’Donnell, Phys. Rev. Lett. 70, 323 (1993).

    Article  ADS  Google Scholar 

  20. S. D. Baranovskii, R. Eichmann, and P. Thomas, phys. stat. solidi (b), 205, R191 (1998).

    Google Scholar 

  21. U. Jahn, M. Ramsteiner, R. Hey, H.T. Grahn, E. Runge, and R. Zimmermann, Phys. Rev. B 56, R4387 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Runge, E., Zimmermann, R. (1999). Optical properties of localized excitons in nanostructures: Theoretical aspects. In: Kramer, B. (eds) Advances in Solid State Physics 38. Advances in Solid State Physics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107622

Download citation

  • DOI: https://doi.org/10.1007/BFb0107622

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41575-6

  • Online ISBN: 978-3-540-44558-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics