Skip to main content

Antidot superlattices: Classical chaos and quantum transport

  • Chapter
  • First Online:
Festkörperprobleme 34

Part of the book series: Advances in Solid State Physics ((ASSP,volume 34))

Abstract

Antidot superlattices represent a model system to study electron transport through a periodic potential. Starting from a high-mobility two-dimensional electron gas a periodic array of potential pillars exceedings the Fermi energy in height can be fabricated by various technological means. Usually the electron mean free path is much larger than the lattice period while the Fermi wavelength is typically an order of magnitude smaller than characteristic features of the artificial superlattice. In this so-called classical ballistic transport regime pronounced maxima occur in the magnetoresistance being related to regular electron trajectories around groups of antidots. Theories based on the classical chaotic motion of the electrons in the antidot potential landscape are able to explain the experimental observations quantitatively. In a rectangular geometry the transport properties depend on the direction of the current flow with respect to the lattice orientation. If the electrons flow through the closely spaced antidots electron orbits around one, two or more antidots that are now symmetry allowed lead to maxima in the magnetoresistance. In contrast if the current flows through the wide open channels between the rows of antidots the magnetoresistance is only influenced by electron orbits whose cyclotron diameter is comparable in size to the large period of the lattice. Basic symmetry relations (e.g. Onsager’s relation) can be tested with these experiments. Since the antidot systems are so well understood in the classical limit the experiments can be used to play with various lattice symmetries. The basic results of these observations persist into the quantum mechanical regime. Finite antidot lattices are fabricated where an array of e.g. 9×9 antidots is surrounded by a square geometry. For very low temperatures, T<100 mK, electron-electron scattering is reduced and the phase coherence length of the electrons may exceed the size of the total systems. The classical commensurability oscillations are now superimposed by strong reproducible fluctuations that die out for large magnetic fields, at which the cyclotron diameter becomes smaller than the lattice period. A Fourier analysis reveals B-periodic features in the magnetic field regime where the electrons classically encircle groups of antidots. We find that the area, that can be calculated from the sequential addition of a flux quantum, corresponds to the area of the classical cyclotron orbit around a group of antidots. We argue that the electrons travel phase coherently along classical trajectories. In finite rectangular lattices this argument is supported by the fact that such B-periodic oscillations only occur in the current direction where transport is influenced by the respective classical orbit. We conclude that antidot superlattices represent a versatile system to study experimentally the crossover from classical electron trajectories to quantum mechanical wave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. B. L. Al'tshuler, JETP Lett. 41, 648 (1985).

    ADS  Google Scholar 

  3. B. L. Al'tshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett. 43, 441 (1986)

    ADS  Google Scholar 

  4. E. M. Baskin, G. M. Gusev, Z. D. Kvon, A. G. Pogosov, and M. V. Entin, JETP Lett. 55, 679 (1992)

    ADS  Google Scholar 

  5. C. W. J. Beenakker and H. van Houten, “Quantum Transport in Semiconductor Nanostructures”, Sol. State Phys. Vol. 44, H. Ehrenreich and D. Turnbull, eds. (Academic Press, New York, 1991

    Google Scholar 

  6. G. Berthold, J. Smoliner, V. Rosskopf, E. Gornik, G. Böhm, and G. Weimann, Phys. Rev. B 45, 11350 (1992).

    Article  ADS  Google Scholar 

  7. F. Bloch, Z. Physik 52, 555 (1928)

    Article  ADS  Google Scholar 

  8. S. Block, M. Suhrke, S. Wilke, A. Menschig, H. Schweitzer, and D. Grützmacher, Phys. Rev. B 47, 6524 (1993)

    Article  ADS  Google Scholar 

  9. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  10. E. Ditlefsen and J. Lothe, Philos. Mag. 14, 759 (1966)

    Article  ADS  Google Scholar 

  11. K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12307 (1990).

    Article  ADS  Google Scholar 

  12. K. Ensslin, K. T. Häusler, C. Lettau, A. Lorke, J. P. Kotthaus, A. Schmeller, R. Schuster, P. M. Petroff, M. Holland, and K. Ploog, “New Concepts in Low Dimensional Physics”, p. 45, eds. G. Bauer, F. Kuchar, and H. Heinrich (Springer, Berlin, 1992)

    Google Scholar 

  13. K. Ensslin, S. Sasa, T. Deruelle, and P. M. Petroff, Surf. Science 263, 319 (1992)

    Article  ADS  Google Scholar 

  14. K. Ensslin and R. Schuster, in “III–V Semiconductor Quantum System”, editor K. Ploog, in print

    Google Scholar 

  15. H. Fang, R. Zeller, and P. J. Stiles, Appl. Phys. Lett. 55, 1433 (1989)

    Article  ADS  Google Scholar 

  16. H. Fang and P. J. Stiles, Phys. Rev. B 41, 10171 (1990)

    Article  ADS  Google Scholar 

  17. R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992)

    Article  ADS  Google Scholar 

  18. R. Fleischmann, T. Geisel, and R. Ketzmerick, Europhysics Lett. 25, 219 (1994)

    Article  ADS  Google Scholar 

  19. K. Forsvoll and I. Holwech, Philos. Mag. 9, 435 (1964) Gerhardts 1976 R. R. Gerhardts, Surf. Sci. 58, 227 (1976)

    Article  ADS  Google Scholar 

  20. G. M. Gusev, Z. D. Kyon, V. M. Kudryashov, L. V. Litvin, Yu. V. Nataushev, V. T. Dolgoplov, and A. A. Shashkin, JETP Lett. 54, 364 (1991)

    ADS  Google Scholar 

  21. G. M. Gusev, Z. D. Kvon, L. V. Litvin, Yu. V. Nataushev, A. K. Kalagin, and A. I. Toropov, JETP Lett. 55, 123 (1992)

    ADS  Google Scholar 

  22. G. M. Gusev, P. Basmaji, D. I. Lubyshev, J. C. Portal, L. V. Litvin, Yu. V. Nastaushev, and A. I. Toropov, Workbook of the 6th International Conference on Modulated Semiconductor Structures, Garmisch, Germany, 1993, p. 949, Solid State Electronics, in print

    Google Scholar 

  23. F. Haake, Quantum Signatures of Chaos, Springer, Berlin Heidelberg, 1991

    MATH  Google Scholar 

  24. see for example D. Heitmann, Surface Sci. 170, 332 (1986).

    Article  ADS  Google Scholar 

  25. E. J. Heller, and S. Tomsovic, Physics Today, July 1993, p. 38

    Google Scholar 

  26. K. Hirakawa and H. Sakaki, Phys. Rev. B 33, 8291 (1986)

    Article  ADS  Google Scholar 

  27. W. E. Howard and F. F. Fang, Solid State Electronics 8, 82 (1965)

    Article  ADS  Google Scholar 

  28. K. Ismail, M. Burkhardt, H. I. Smith, N. H. Karam, and P. A. Sekula-Moise, Appl. Phys. Lett. 58, 1539 (1991)

    Article  ADS  Google Scholar 

  29. R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London) A 130, 499 (1931)

    Article  MATH  ADS  Google Scholar 

  30. C. Lettau, M. Wendel, A. Schmeller, W. Hansen, J. P. Kotthaus, G. Böhm, G. Weimann, and M. Holland, Solid State Electronics, in print

    Google Scholar 

  31. P. A. Lee, Physica A 140, 169 (1986)

    Article  ADS  Google Scholar 

  32. K. Y. Lee, D. P. Kern, K. Ismil, R. J. Haug, T. P. Smith III, W. T. Masselink, and J. M. Hong, J. Vac. Sci. Technol. B 8, 1366 (1990)

    Article  Google Scholar 

  33. A. Lorke, J. P. Kotthaus and K. Ploog, Superlattices and Microstructures 9, 103 (1991).

    Article  ADS  Google Scholar 

  34. A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. B 44, 3447 (1991)

    Article  ADS  Google Scholar 

  35. A. Menschig, B. Roos, R. Germann, A. Forchel, and K. Pressel, J. Vac. Sci. Technol. B 8 1353 (1990)

    Article  Google Scholar 

  36. F. Nihey and K. Nakamura, Physica (Amsterdam) 184B, 398 (1993)

    ADS  Google Scholar 

  37. L. Onsager, Phys. Rev. 38, 2265 (1931)

    Article  MATH  ADS  Google Scholar 

  38. L. N. Pfeiffer, K. W. West, H. L. Störmer, and K. Baldwin, Appl. Phys. Lett. 55, 1888 (1989)

    Article  ADS  Google Scholar 

  39. for a review see K. Ploog, “Nato ASI Series, Vol. 170, Plenum Press, New York, 1987, eds. E. E. Mendez and K. von Klitzing, p. 43

    Google Scholar 

  40. F. P. Salzberger, Diploma Thesis, Universität München, 1993

    Google Scholar 

  41. A. Scherrer, M. L. Roukes, H. G. Craighead, R. M. Ruthen, E. D. Beebe, and J. P. Harbison, Appl. Phys. Lett. 51, 2133 (1987)

    Article  ADS  Google Scholar 

  42. R. Schuster, K. Ensslin, J. P. Kotthaus, M. Holland, and S. P. Beaumont, Superlattices and Microstructures 12, 93 (1992)

    Article  ADS  Google Scholar 

  43. R. Schuster, K. Ensslin, J. P. Kotthaus, M. Holland, and C. Stanley, Phys. Rev. B 47, 6843 (1993)

    Article  ADS  Google Scholar 

  44. R. Schuster, K. Ensslin, D. Wharam, S. Kühn, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 49, 8510 (1994)

    Article  ADS  Google Scholar 

  45. H. Silberbauer, J. Phys. C 4, 7355 (1992)

    Google Scholar 

  46. H. Silberbauer and U. Rössler, preprint

    Google Scholar 

  47. H. Silberbauer, P. Rotter, M. Suhrke, and U. Rössler, Proceedings of the Winterschool on “Interaction and Scattering Phenomena in Nanostructures”, Mauterndorf, Austria, eds. G. Bauer, H. Heinrich, and F. Kuchar, Semiconductor Science and Technology, in print

    Google Scholar 

  48. C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost, D. A. Frost, D. A. Ritchie, G. A. C. Jones, and G. Hill, J. Phys. C 2, 3405 (1990)

    Google Scholar 

  49. J. Spector, H. L. Störmer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 56, 967 (1990)

    Article  ADS  Google Scholar 

  50. G. M. Sundaram, N. J. Bassom, R. J. Nicholas, G. J. Rees, P. J. Heard, P. D. Prewett, J. E. F. Frost, G. A. C. Jones, D. C. Peacock, and D. A. Ritchie, Phys. Rev. B 47, 7348 (1993)

    Article  ADS  Google Scholar 

  51. G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987)

    Article  ADS  Google Scholar 

  52. T. J. Thornton, M. L. Roukes, A. Scherer, and B. P. Van de Gaag, Phys. Rev. lett. 63, 2128 (1989).

    Article  ADS  Google Scholar 

  53. K. Tsubaki, T. Honda, and Y. Tokura, Surf. Science 263, 392 (1992)

    Article  ADS  Google Scholar 

  54. H. van Houten, C. W. J. Beenakker, J. G. Williamson, M. E. I. Brockaart, P. H. M. van Loodsrecht, B. J. van Wees, J. E. Mooji, C. T. Foxon, and J. J. Harris, Phys. Rev. B 39, 8556 (1989)

    Article  ADS  Google Scholar 

  55. B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. E. Timmering, M. E. I. Broekhaart, C. T. Foxon, and J. J. Harris, Phys. Rev. Lett. 62, 2523 (1989)

    Article  ADS  Google Scholar 

  56. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985)

    Article  ADS  Google Scholar 

  57. D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).

    Article  ADS  Google Scholar 

  58. D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118 (1993)

    Article  ADS  Google Scholar 

  59. A. Yacoby, U. Sivan, C. P. Umbach, and J. M. Jong, Phys. Rev. Lett. 66, 1938 (1991) *** DIRECT SUPPORT *** A00AX034 00008

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Schuster, R., Ensslin, K. (1995). Antidot superlattices: Classical chaos and quantum transport. In: Helbig, R. (eds) Festkörperprobleme 34. Advances in Solid State Physics, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107528

Download citation

  • DOI: https://doi.org/10.1007/BFb0107528

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08042-6

  • Online ISBN: 978-3-540-75337-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics