Skip to main content

The uniform concentration of measure phenomenon in ℓ n p (1 ≤ p ≤ 2)

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1745))

Abstract

We prove the uniform concentration of Lebesgue measure phenomenon on the ball of ℓ n p for 1 ≤ p ≤ 2. In particular, we give a first concentration inequality for Lebesgue measure on the ball of ℓ n1 . An application is the lower exponential bound on the dimension of ℓ admitting an isomorphic embedding of ℓ n1 and on the distortion of such those embeddings, proved in [L].

Research supported by DGICYT grant #PB96-1327. This paper includes part of the Ph.D. thesis of the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arias-de-Reyna J., Ball K., Villa R. (1998) Concentration of the distance in finite dimensional normed spaces. Mathematica 45:245–252

    MathSciNet  MATH  Google Scholar 

  2. Borell C. (1975) The Brunn-Minkowski inequality in Gauss space. Inventiones Math. 30:205–216

    Article  MathSciNet  MATH  Google Scholar 

  3. Gromov M., Milman V.D. (1983–1984) Brunn theorem and a concentration of volume phenomena for symmetric convex bodies. Geometric Aspects of Functional Analysis, Seminar Notes, Tel-Aviv

    Google Scholar 

  4. Gromov M., Milman V.D. (1987) Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math. 62:263–282

    MathSciNet  MATH  Google Scholar 

  5. Knuth D.E. (1968) The Art of Computer Programming (Vol. I) Fundamental Algorithms, Addison-Wesley, Reading Mass

    MATH  Google Scholar 

  6. Larsson J. (1986) Embeddings of ℓ m p into ℓ n , 1 ≤ p ≤ 2. Israel J. Math. 55:94–124

    Article  MathSciNet  Google Scholar 

  7. Maurey B. (1991) Some deviation inequalities. Geometric and Functional Analysis 1:188–197

    Article  MathSciNet  MATH  Google Scholar 

  8. Pisier G. (1980–1981) Remarques sur un Résultat non publié de B. Maurey. Séminaire d'Analyse Fonctionnelle, Exp. V

    Google Scholar 

  9. Pisier G. (1989) The Volume of Convex Bodies and Banach Spaces Geometry. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Talagrand M. (1991) A new isoperimetric inequality and the concentration of measure phenomenon. Geometric Aspects of Functional Analysis (Israel Seminar, 1989–1990), Lecture Notes in Math. 1469:94–124

    Article  MathSciNet  MATH  Google Scholar 

  11. Talagrand M. (1994) The supremum of some canonical processes. Amer. J. Math. 116:283–325

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vitali D. Milman Gideon Schechtman

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Arias-de-Reyna, J., Villa, R. (2000). The uniform concentration of measure phenomenon in ℓ n p (1 ≤ p ≤ 2). In: Milman, V.D., Schechtman, G. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107203

Download citation

  • DOI: https://doi.org/10.1007/BFb0107203

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41070-6

  • Online ISBN: 978-3-540-45392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics