Skip to main content

Bounds for properties of complex systems

  • Conference paper
  • First Online:
Nonlinear Physics of Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 476))

Abstract

A subset of complex physical systems are those for which the basic equations describing the system are known. An example are the Navier-Stokes equations describing turbulent flows in arbitrary geometrical configurations. Based on energy type balances, bounds on transport quantities can be derived rigorously. In many cases of turbulent fluid flow the extremalizing vector fields show surprising similarities with the observed turbulent velocity fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Busse, F.H. (1969): Bounds on the transport of mass and momentum by turbulent flow between parallel plates. J. Applied Math. Phys. (ZAMP) 20, 1–14

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H. (1970): Bounds for turbulent shear flow. J. Fluid Mech. 41, 219–240

    Article  MATH  ADS  Google Scholar 

  • Busse, F.H. (1972a): The bounding theory of turbulence and it physical significance in the case of turbulent Couette flow. Springer Lecture Notes in Physics, vol. 12, 103–126

    Article  ADS  Google Scholar 

  • Busse, F.H. (1972b): A property of the energy stability limit for plane parallel shear flow. Arch. Rat. Mech. Anal. 47, 28–35

    Article  MATH  MathSciNet  Google Scholar 

  • Busse, F.H. (1978): The Optimum Theory of Turbulence. Adv. Appl. Mech. 20, 77–121

    MathSciNet  Google Scholar 

  • Doering, C.R., Constantin, P. (1992): Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69, 1648–1651

    Article  ADS  Google Scholar 

  • Doering, C.R., Constantin, P. (1994): Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49, 4087–4099

    Article  ADS  MathSciNet  Google Scholar 

  • Gebhardt, T., Grossmann, S., Holthaus, M., Löhden, M. (1995): Rigorous bound on the plane-shear-flow dissipation rate. Phys. Rev. E 51, 360–365

    Article  ADS  MathSciNet  Google Scholar 

  • Hopf, E. (1941): Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Annalen 117, 764–775

    Article  MATH  MathSciNet  Google Scholar 

  • Lathrop, D.P., Fineberg, J., Swinney, H.L. (1992): Transition to shear-driven turbulence in Couette-Taylor flow. Phys. Rev. A 46, 6390–6405

    Article  ADS  Google Scholar 

  • Reichardt, H. (1959): Gesetzmäßigkeiten der geradlinigen turbulenten Couetteströmung. Mitt. Max-Planck-Institut für Strömungsforschung, Göttingen, Nr. 22

    Google Scholar 

  • Smith, G.P., Townsend, A.A. (1982): Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123, 187–217

    Article  ADS  Google Scholar 

  • Soward, A.M., Kerswell, R.R. (1996): Upper bounds for turbulent Couette flow incorporating the poloidal constraint. J. Fluid Mech., in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Parisi Stefan C. Müller Walter Zimmermann

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Busse, F.H. (1996). Bounds for properties of complex systems. In: Parisi, J., Müller, S.C., Zimmermann, W. (eds) Nonlinear Physics of Complex Systems. Lecture Notes in Physics, vol 476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105424

Download citation

  • DOI: https://doi.org/10.1007/BFb0105424

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61734-1

  • Online ISBN: 978-3-540-70699-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics