Skip to main content

Role of doping, pressure and van Hove singularities on highest Tc materials

  • Conference paper
  • First Online:
Recent Developments in High Temperature Superconductivity

Part of the book series: Lecture Notes in Physics ((LNP,volume 475))

Abstract

A review of some striking predictions of electronic structure theory about the role of van Hove singularities (vHs) on the electronic structure and properties of the newest and highest temperature superconducting cuprates is given. The results provide possible strong evidence for the role of vHs in the superconductivity of quasi-2D high Tc systems. They thus serve to call attention to their role not only in enhancing Tc through large increases in N(EF) and Fermi surface areas, but also in possibly providing support for vHs based excitonic pairing mechanisms for superconductivity. Further, this information, derived from the understanding—expressed as an “empirical rule”—gained from the related role of doping and pressure, is used to investigate other likely systems for being made into high Tc superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Smedskjaer et al., Physica C 156, 269 (1988).

    Article  ADS  Google Scholar 

  2. H. Haghighi et al., in The University of Miami Workshop on: Electronic Structure and Mechanisms for High Temperature Superconductivity (University of Miami, Miami, 2–9 January 1991).

    Google Scholar 

  3. F. Mueller, J. Phys. Chem. Solids 52, 1457 (1991).

    Article  ADS  Google Scholar 

  4. J. Yu, A. Freeman, and J. Xu, Phys. Rev. Lett. 58, 1035 (1987).

    Article  ADS  Google Scholar 

  5. J. Xu, T. Watson-Yang, J. Yu, and A. Freeman, Phys. Rev. Lett. 120, 489 (1987).

    Google Scholar 

  6. This literature is so vast that we cite only some recent references and refer to these for earlier work; J.E. Hirsh and D.J. Scalapino, Phys. Rev. Lett. 56 (1986) 2735; J. Friedel, J. Phys. Condens. Matter 1 (1989) 7757; R.S. Markiewicz, Physica C 200 (1992) 65; D.M. Newns, et al., Phys. Rev. Lett. 69 (1992) 1264; K. Levin, et al., in “Electronic Structure and Mechanisms for High Temperature Superconductivity”, edited by J. Ashkenazi and G. Vezzoli (Plenum, New York) 1992 p. 481.

    ADS  Google Scholar 

  7. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981), and references therein.

    Article  ADS  Google Scholar 

  8. M. Methfessel, Phys. Rev. B 38, 1537 (1988).

    Article  ADS  Google Scholar 

  9. M. Azuma et al., Nature 356, 775 (1992).

    Article  ADS  Google Scholar 

  10. T. Siegrist, S. M. Zahurak, D. W. Murphy, and R.S. Roth, Nature (London) 334, 231 (1988).

    Article  ADS  Google Scholar 

  11. Z. Hirori, M. Azuma, M. Takano, and Y. Bando, J. Solid State Chem. 95, 230 (1991).

    Article  ADS  Google Scholar 

  12. L. Mattheiss and D. Hamman, Phys. Rev. B 40, 2217 (1989).

    Article  ADS  Google Scholar 

  13. D. Singh et al., Physica B 163, 470 (1990).

    Article  ADS  Google Scholar 

  14. M. A. Korotin and V. I. Anisimov, Mat. Lett. 10, 28 (1990).

    Article  Google Scholar 

  15. S. Hatta, R. V. Kasowski, and W. Y. Hsu, Appl. Phys. A55, 508 (1992).

    ADS  Google Scholar 

  16. D. L. Novikov, V. A. Gubanov, and A. J. Freeman, Physica C 210, 301 (1993).

    Article  ADS  Google Scholar 

  17. I. M. Lifshitz, Sov. Phys.—JETP 11, 1130 (1960).

    Google Scholar 

  18. S. Massidda, N. Hamada, J. Yu, and A. Freeman, Physica C 157, 571 (1989).

    Article  ADS  Google Scholar 

  19. J. Yu, S. Massidda, and A. Freeman, Physica C 152, 273 (1988).

    Article  ADS  Google Scholar 

  20. S. Massidda, J. Yu, A. Freeman, and D. Koelling, Phys. Lett. A 122, 198 (1987).

    Article  ADS  Google Scholar 

  21. J. Yu, S. Massidda, A. Freeman, and D. Koelling, Phys. Lett. A 122, 203 (1987).

    Article  ADS  Google Scholar 

  22. A. A. Manuel and et al., Europhys. Lett. 6, 61 (1987).

    Google Scholar 

  23. L. Dagens, J. Phys. F 8, 2093 (19987).

    Google Scholar 

  24. D. L. Novikov and A. J. Freeman, Physica C 219, 246 (1993).

    Article  ADS  Google Scholar 

  25. H. Shaked et al., Phys. Rev. B 50, 12752 (1994).

    Article  ADS  Google Scholar 

  26. D. L. Novikov and A. J. Freeman, Physica C 212, 233 (1993).

    Article  ADS  Google Scholar 

  27. D. L. Novikov and A. J. Freeman, Physica C 216, 273 (1993).

    Article  ADS  Google Scholar 

  28. J. L. Wagner et al., Physica C 210, 447 (1993).

    Article  ADS  Google Scholar 

  29. Q. Huang, J. W. Lynn, Q. Xiong, and C. W. Chu, Phys. Rev. B 52, 462 (1995).

    Article  ADS  Google Scholar 

  30. C. Tsuei et al., Phys. Rev. Lett. 69, 2134 (1992).

    Article  ADS  Google Scholar 

  31. J. Yu, S. Massidda, and A. J. Freeman, Physica C 152, 273 (1988).

    Article  ADS  Google Scholar 

  32. D. R. Hamann and L. F. Mattheiss, Phys. Rev. B 38, 5138 (1988).

    Article  ADS  Google Scholar 

  33. D. J. Singh and W. E. Pickett, Physica C 203, 193 (1992).

    Article  ADS  Google Scholar 

  34. R. S. Markiewicz, Physica C 217, 381 (1993).

    Article  ADS  Google Scholar 

  35. M. Al-Mamouri, P. P. Edvards, C. Greaves, and M. Slaski, Nature 369, 382 (1994).

    Article  ADS  Google Scholar 

  36. Z. Hiriri, N. Kobayashi, and M. Takano, Nature 371, 139 (1994).

    Article  ADS  Google Scholar 

  37. D. L. Novikov, A. J. Freeman, and J. D. Jorgensen, Phys. Rev. B 51, 6675 (1994).

    Article  ADS  Google Scholar 

  38. A. A. Abrikosov, J. C. Campuzano, and K. Gofron, Physica C 214, 73 (1993).

    Article  ADS  Google Scholar 

  39. M. T. Andersen and K. R. Poeppelmeier, Chem. Mater. 3, 476 (1991).

    Article  Google Scholar 

  40. J. B. Wiley et al., J. Solid State Chem. 87, 250 (1990).

    Article  ADS  Google Scholar 

  41. J. T. Vaughey, J. B. Wiley, and K. R. Poeppelmeier, Z. Anorg. Allg. Chem. 598/599, 372 (1991).

    Google Scholar 

  42. J. T. Vaughey et al., Chem. Mater. 3, 935 (1991).

    Article  Google Scholar 

  43. G. Roth et al., J. Phys. 1, 721 (1991).

    Google Scholar 

  44. R. J. Cava et al., Physica C 185–198, 180 (1991).

    Article  Google Scholar 

  45. T. Krekels et al., J. Solid State Chem. 105, 313 (1993).

    Article  ADS  Google Scholar 

  46. M. T. Andersen, K. R. Poeppelmeier, S. A. Gramash, and J. K. Burdett, J. Solid State Chem. 102, 164 (1993).

    Article  ADS  Google Scholar 

  47. D. L. Novikov, A. J. Freeman, K. R. Poeppelmeier, and V. P. Zhukov, Physica C 252, 7 (1995).

    Article  ADS  Google Scholar 

  48. A. Gomezano and M. T. Weller, J. Mater. Chem. 3, 771 (1993).

    Article  Google Scholar 

  49. A. Gomezano and M. T. Weller, J. Mater. Chem. 3, 979 (1993).

    Article  Google Scholar 

  50. K. B. Greenwood et al., Physica C 235–240, 349 (1994).

    Article  Google Scholar 

  51. P. A. Salvador et al., J. Solid State Chem. (1995), in press.

    Google Scholar 

  52. M. R. Palacin, A. Feurtes, N. Casan-Pastor, and P. Gómez-Romero, Adv. Mater. 6, 54 (1994).

    Article  Google Scholar 

  53. P. Gómez-Romero, M. R. Palacin, and J. Rodrigues-Carvajal, J. Chem. Mater. 6, 2118 (1994).

    Article  Google Scholar 

  54. M. R. Palacin, F. Krumeich, M. T. Caldés, and P. Gómez-Romero, J. Solid State Chem. (1995), in press.

    Google Scholar 

  55. K. B. Greenwood et al., J. Chem. Mater. 7, 1355 (1995).

    Article  Google Scholar 

  56. A. Fukuoka et al., Physica C 231, 372 (1994).

    Article  ADS  Google Scholar 

  57. D. L. Novikov, A. J. Freeman, and K. R. Poeppelmeier

    Google Scholar 

  58. A. L. Ivanovsky, V. P. Zhukov, and V. A. Gubanov, Electronic Structure of Refractory Carbides and Nitrides (University Press, Cambridge, 1994).

    Google Scholar 

  59. I.-S. Yang et al., Phys. Rev. B 51, 644 (1995).

    Article  ADS  Google Scholar 

  60. D. L. Novikov et al., Phys. Rev. B, submitted.

    Google Scholar 

  61. M. C. Krantz, C. Tompsen, H. Mattausch, and M. Cardona, Phys. Rev. B 50, 1165 (1995).

    Article  ADS  Google Scholar 

  62. N. H. Hur et al., Physica C 218, 365 (1993).

    Article  ADS  Google Scholar 

  63. Y. T. Ren et al., Physica C 226, 209 (1994).

    Article  ADS  Google Scholar 

  64. M. G. Stachiotti et al., Physica C 243, 207 (1995).

    Article  ADS  Google Scholar 

  65. D. L. Novikov and A. J. Freeman, Physica C 222, 38 (1994).

    Article  ADS  Google Scholar 

  66. A. A. Abrikosov, Physica C 244, 243 (1995).

    Article  ADS  Google Scholar 

  67. V. G. Vaks, A. V. Trefilov, and S. V. Fomichev, Sov. Phys.—JETP 53, 830 (1981).

    Google Scholar 

  68. V. G. Vaks and A. V. Trefilov, J. Phys. F 18, 213 (1988).

    Article  ADS  Google Scholar 

  69. V. G. Vaks and A. V. Trefilov, J. Phys: Cond. Matter 3, 1389 (1991).

    Article  ADS  Google Scholar 

  70. M. I. Katsnelson, I. I. Naumov, and A. V. Trefilov, Phase Transitions B 49, 143 (1994).

    Article  Google Scholar 

  71. V. I. Nizhankovski, M. I. Katsnelson, G. V. Peschanskikh, and A. V. Trefilov, Sov. Phys.—JETP Lett. 59, 733 (1994).

    ADS  Google Scholar 

  72. V. S. Egorov and A. I. Fedorov, Sov. Phys.—JETP Lett. 58, 959 (1983).

    Google Scholar 

  73. N. V. Bashkatov and N. L. Sorokin, Sov. Phys. Sol. State 31, 910 (1989).

    Google Scholar 

  74. V. Y. Irkhin, M. I. Katsnelson, and A. V. Trefilov, J. Magn. Magn. Mater. 117, 210 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Klamut Boyd W. Veal Bogdan M. Dabrowski Piotr W. Klamut

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Novikov, D.L., Freeman, A.J. (1996). Role of doping, pressure and van Hove singularities on highest Tc materials. In: Klamut, J., Veal, B.W., Dabrowski, B.M., Klamut, P.W. (eds) Recent Developments in High Temperature Superconductivity. Lecture Notes in Physics, vol 475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102016

Download citation

  • DOI: https://doi.org/10.1007/BFb0102016

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61631-3

  • Online ISBN: 978-3-540-70695-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics