Skip to main content

On the bifurcations of subharmonics in reversible systems

  • Conference paper
  • First Online:
Singularity Theory and its Applications

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1463))

Abstract

Following Vanderbauwhede’s approach [23], the study of the local bifurcation of subharmonics in reversible systems leads to reduced equations equivariant under the dihedral groups. Depending on the dimension of the space, or on the type of the involution, the bifurcation equations can change significantly. We investigate some unusual properties of those equations. In particular we classify up to topological codimension 1 the degenerate bifurcations when the dimension of the space is odd and the signature of the involution is +1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I.Arnol’d. Geometrical Methods in the Theory of Ordinary Differential Equations.Springer.1988.

    Google Scholar 

  2. G. Birkhoff. The restricted problem of three bodies. Rend.Circ.Mat.Palermo. 39 (1915),265–334.

    Article  MATH  Google Scholar 

  3. E. Buzano,G. Geymonat,T. Poston. Post-buckling behaviour of a nonlinearly hyperelastic thin rod with cross-section invariant under dihedral group D q . Arch.Rat.Mech.Anal.89 (1989),307–388.

    MathSciNet  MATH  Google Scholar 

  4. J.Damon. The unfolding and determinacy theorems for subgroups of A and K. Mem.AMS.306.1984.

    Google Scholar 

  5. J. Damon. Topological equivalence of bifurcation problems. Nonlinearity.1 (1988),311–332.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.L. Devaney.Reversible diffeomorphisms and flows. Trans.AMS.218 (1976),89–113.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.E.Furter. Bifurcation of subharmonics in reversible systems and the classification of bifurcation diagrams equivariant under the dihedral groups I. Period tripling. Preprint.Warwick Univ.1990.

    Google Scholar 

  8. J.E.Furter. Bifurcation of subharmonics in reversible systems and the classification of bifurcation diagrams equivariant under the dihedral groups II. High resonances. Preprint.Warwick Univ.1990.

    Google Scholar 

  9. J-J. Gervais. Bifurcations of subharmonic solutions in reversible systems. J.Diff.Eq.75 (1988),28–42.

    Article  MathSciNet  MATH  Google Scholar 

  10. M.Golubitsky,M.Krupa,C.C.Lim. Time reversibility and particle sedimentation. Preprint.1989.

    Google Scholar 

  11. J.K.Hale. Ordinary Differential Equations. McGraw-Hill.1969.

    Google Scholar 

  12. A.Hummel. Bifurcations of periodic points. Thesis.Groningen Univ.1979.

    Google Scholar 

  13. K.Kirchgässner,J.Scheurle. Global branches of periodic solutions of reversible systems. H.Brezis,H.Berestycki.Eds.Res.Notes.Math.60. Pitman.1981.

    Google Scholar 

  14. Y. Kuramoto,T. Yamada. Turbulent states in chemical reaction. Prog.Theo.Phys.56 (1976),679.

    Article  MathSciNet  Google Scholar 

  15. B.A. Malomed, M.I. Tribel’skii. Bifurcations in distributed kinetic systems with aperiodic instability. Physica D. 14 (1984), 67–87.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Melbourne. The recognition problem for equivariant singularities. Nonlinearity.1 (1988),215–240.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Michelson. Steady solutions of the Kuratomo-Shivashinsky equation. PhysicaD.19 (1986),89–111.

    MathSciNet  Google Scholar 

  18. J.K. Moser. On the theory of quasi-periodic motions. SIAM.Rev.8 (1966),145–172.

    Article  MathSciNet  MATH  Google Scholar 

  19. W.Pluschke. Invariant tori bifurcating from fixed points of nonanalytic reversible systems. Thesis.Stuttgart Univ.1989.

    Google Scholar 

  20. M.B.Sevryuk. Reversible Systems. Lec.Notes.Maths.1211. Springer.1986.

    Google Scholar 

  21. J.Scheurle. Verzweigung quasiperiodischer Lösungen bei reversiblen dynamischen Systemen. Habilitationschrift.Stuttgart Univ. 1980.

    Google Scholar 

  22. A.Vanderbauwhede. Local bifurcation and symmetry. Res.Notes.Math.75.Pitman.1982.

    Google Scholar 

  23. A. Vanderbauwhede. Bifurcation of subharmonic solutions in time reversible systems.ZAMP.37 (1986),455–477.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Vanderbauwhede. Secondary bifurcations of periodic solutions in autonomous systems. Can.Math.Soc.Proc.Conf.8 (1987),693–701.

    MathSciNet  MATH  Google Scholar 

  25. J.H. Wolkowisky. Branches of periodic solutions of the nonlinear Hill’s equation. J.Diff.Eq.11 (1972),385–400.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark Roberts Ian Stewart

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Furter, J.E. (1991). On the bifurcations of subharmonics in reversible systems. In: Roberts, M., Stewart, I. (eds) Singularity Theory and its Applications. Lecture Notes in Mathematics, vol 1463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0085431

Download citation

  • DOI: https://doi.org/10.1007/BFb0085431

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53736-6

  • Online ISBN: 978-3-540-47047-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics