Skip to main content

Covariant theory of conductivity in ideal fluid or solid media

  • Main Lectures
  • Conference paper
  • First Online:
Relativistic Fluid Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1385))

Abstract

After a preparatory account of the established theory of non-conducting perfect fluid media, with emphasis on the important but traditionally neglected concept of the 4-momentum 1-form associated with each chemically independent constituent, it is shown how to generalise the theory to allow for conductivity by extending the variational formalism in terms of independent displacements of the world-lines.

Attention is concentrated initially on the simplest possible conducting model, in which appart from a single conserved particle current the only other constituent is the entropy-current whose flow world-lines are displaced independently of those of the conserved particles in the variational formulation, resistive dissipation being included by allowing the variationally defined force density acting between the particle and entropy currents to be non-zero. The model so obtained is fully determined by the specification of the resistivity coefficient and the traditional thermodynamic variables of the corresponding non-conducting thermal equilibrium state if it is restricted by postulating that it satisfies a “regularity ansatz” to the effect that the separate 4-momenta associated with the (non-conserved) entropy and the (conserved) particles are respectively directed allong the corresponding flow directions. It is shown that this regularity ansatz is consistent with good hyperbolic causal behaviour, unlike a previous ansatz proposed by Landau and Lifshitz, which is interpretable as a degeneracy requirement to the effect that the separate 4-momenta have the same direction as each other, and which results in (inevitably superluminal) parabolic behaviour. Another ansatz, proposed much earlier by Eckart, is shown to be effectively equivalent to the mixed-up requirement that the 4-momentum associated with the entropy to be directed not along its own flow direction but along that of the particles, and (as recently shown by Hiscock and Lindblom) results in even worse (quasi-elliptic) behavior.

After this analysis of the simplest possible well behaved thermally conducting model, it is shown how the principles by which it was constructed can be extended to allow for multiple (including electrically charged) currents, in solid as well as fluid media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Eckart, Phys. Rev. 58, 919 (1940).

    Article  ADS  Google Scholar 

  2. L. Landau, E.M. Lifshitz, Fluid Mechanics, section 127 (Addison-Wesley, Reading, Massachusetts, 1958).

    MATH  Google Scholar 

  3. C. Cattaneo, C.R. Acad. Sci. Paris, 247, 431 (1958).

    MathSciNet  Google Scholar 

  4. M. Kranys, Nuovo Cimento, B50, 48 (1967).

    Article  ADS  Google Scholar 

  5. I. Muller, Z. Physik, 198, 329 (1967).

    Article  ADS  Google Scholar 

  6. W. Israel, Ann. Phys. 100, 310 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. Stewart, Proc. Roy. Soc. Lond., A357, 59 (1977).

    Article  ADS  Google Scholar 

  8. W. Israel, J.M. Stewart, Proc. Roy. Soc. A365, 43 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Israel, J.M. Stewart, Ann. Phys. (N.Y.), 118, 341 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Carter, in Journées Relativistes 1976, ed. M. Cahen, R. Debever, J. Geheniau, pp 12–27 (Université Libre de Bruxelles, 1976).

    Google Scholar 

  11. B. Carter, in A Random Walk in Relativity and Cosmology, ed N. Dadhich, J. Krishna Rao, J.V. Narlikar, C.V. Vishveshwara (Wiley Eastern, Bombay, 1983).

    Google Scholar 

  12. W.A. Hiscock, L. Lindblom, Ann. Phys. (N.Y.), 151, 466 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  13. W.A. Hiscock, L. Lindblom, Phys. Rev. D31, 725 (1985)

    ADS  MathSciNet  Google Scholar 

  14. W.A. Hiscock, L. Lindblom, preprint, (1987).

    Google Scholar 

  15. B.F. Schutz, Geometrical Methods of Mathematical Physics, (Cambridge University Press, 1980)

    Google Scholar 

  16. B. Carter, in Active Galactic Nuclei, ed C. Hazard, S. Mitton, pp 273–299 (Cambridge University Press, 1979)

    Google Scholar 

  17. H. Ertel, Met. Z. 59, 277 (1942)

    Google Scholar 

  18. J. Katz, D. Lynden-Bell, Proc. Roy. Soc. Lond., A381, 263 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. L. Friedman, Commun. Math. Phys., 62, 247 (1978).

    Article  ADS  Google Scholar 

  20. J. Katz, Proc. Roy. Soc. Lond., A391, 415 (1984).

    Article  ADS  Google Scholar 

  21. L. Woltjer, Proc. Nat. Acad. Sci. U.S.A., 44, 489; 833 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  22. H.K. Moffat, J. Fluid Mech. 35, 117 (1969)

    Article  ADS  Google Scholar 

  23. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (Benjamin, New York, 1967).

    MATH  Google Scholar 

  24. B. Carter, B. Gaffet, J. Fluid Mech. (1987).

    Google Scholar 

  25. A.H. Taub, Phys. Rev., 94, 1468 (1954).

    Article  ADS  MathSciNet  Google Scholar 

  26. J.L. Friedman, B.F. Schutz., Astroph. J., 200, 204 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  27. B.F. Schutz, Phys. Rev., D2, 2762.

    Google Scholar 

  28. B.F. Schutz, R. Sorkin, Ann. Phys. (N.Y.), 107, 1.

    Google Scholar 

  29. B. Carter, Commun. Math. Phys. 30, 261 (1973).

    Article  ADS  Google Scholar 

  30. B. Carter, in Journées Relativistes 1979, ed. I. Moret-Bailly, C. Latremolière, pp 166–182 (Faculté des Sciences, Anger, 1979).

    Google Scholar 

  31. A. Trautman, Lectures in Theoretical Physics (Brandeis Summer School Notes) ed H. Bondi, F. Pirani, A. Trautman, (Prentice Hall, New Jersey, 1965).

    Google Scholar 

  32. S. Weinberg, Gravitation and Cosmology, pp 53–57 (Wiley, New York, 1972).

    Google Scholar 

  33. J.G. Oldroyd, Proc. Roy. Soc. Lond., A272, 44 (1970).

    Google Scholar 

  34. B. Carter, H. Quintana, Proc. Roy. Soc. Lond., A 331, 57 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  35. B. Carter, Proc. Roy. Soc. Lond., A 372, 169 (1980).

    Article  ADS  Google Scholar 

  36. B. Carter and H. Quintana, Phys. Rev., D16, 2928 (1977).

    ADS  Google Scholar 

  37. B. Carter, in Gravitational Radiation (Les Houches 1982), ed. N. Deruelle and T. Piran, pp 455–464 (North Holland, Amsterdam, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Angelo M. Anile Yvonne Choquet-Bruhat

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Carter, B. (1989). Covariant theory of conductivity in ideal fluid or solid media. In: Anile, A.M., Choquet-Bruhat, Y. (eds) Relativistic Fluid Dynamics. Lecture Notes in Mathematics, vol 1385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084028

Download citation

  • DOI: https://doi.org/10.1007/BFb0084028

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51466-4

  • Online ISBN: 978-3-540-48142-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics