Skip to main content

An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions

  • Conference paper
  • First Online:
Probability in Banach Spaces V

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1153))

Abstract

Let (X, α, P) be a probability space, x(1),x(2), ... coordinates for the countable product of copies of X, and ℱ ⊂ ℒ2 (X, α, P). Let vn be the normalized empirical measure n−1/2x(1)+...+δx(n)-nP). Let ℓ(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖ := supfεℱ ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where vn converges in law for ‖·‖. The limit is a Gaussian process Gp with mean 0 and covariance

$$EG_P (f)G_P (g) = P(fg) - P(f)P(g): = (f,g)_{P,O} ,$$

f,g ε ℱ. Say ℱ is GPBUC if GP can be chosen to have each sample function bounded and uniformly continuous for (.,.)P,0. Say the central limit theorem holds for ℱ if ℱ is GPBUC and we have convergence of upper integrals limn→∞ ∝*H(vn)dpn = EH(GP) for every bounded continuous real function H on ℓ(ℱ). (Thus, as noted by J. Hoffmann-Jørgensen, convergence "in law" does not require definition of laws.) In Sec. 4 an extended Wichura’s theorem is proved: given such convergence in law, there exist almost surely convergent realizations. Sec. 5 shows that the new definition of central limit theorem holding is equivalent to the previous definition of "functional Donsker class." Secs. 6–7 treat the case where ℱ={M1h≥M: 0<M<∞} for a random variable h. This case reduces to the study of weighted empirical distribution functions. Conditions for the central limit theorem are collected and made precise.

Partially supported by National Science Foundation Grant MCS-8202122

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chibisov, D. M. (1964). Some theorems on the limiting behavior of the empirical distribution function. Trudy Mat. Inst. Steklov (Moscow) 71 104–112; Selected Transls. Math. Statist. Prob. 6 147–156.

    Google Scholar 

  • Cohn, Donald L. (1980). Measure Theory. Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  • Csörgó, M. (1984). Review of Shorack and Wellner (1982). Math. Revs. 84f:60041.

    Google Scholar 

  • Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 pp. 277–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Dudley, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 109–126.

    MathSciNet  MATH  Google Scholar 

  • _____ (1967a). Measures on non-separable metric spaces. Ibid. 11 449–453.

    MathSciNet  MATH  Google Scholar 

  • _____ (1967b). The sizes of compact subsets of Hilbert spaces and continuity of Gaussian processes. J. Functional Analysis 1 290–330.

    Article  MathSciNet  MATH  Google Scholar 

  • _____ (1968). Distances of probability measures and random variables. Ann. Math. Statist. 39 1563–1572.

    MathSciNet  MATH  Google Scholar 

  • _____ (1973). Sample functions of the Gaussian process. Ann. Probab. 1 66–103.

    Article  MathSciNet  MATH  Google Scholar 

  • _____ (1978). Central limit theorems for empirical measures. Ibid. 6 899–929; Correction, ibid. 7 (1979) 909–911.

    Article  MathSciNet  MATH  Google Scholar 

  • _____ (1984). A course on empirical processes. Ecole d’été de probabilités de St.-Flour, 1982. Lecture Notes in Math. 1097 2–142.

    Google Scholar 

  • _____, and Walter Philipp (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. verw. Geb. 62 509–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdös, P. (1942). On the law of the iterated logarithm. Ann. Math. 43 419–436.

    Article  MATH  Google Scholar 

  • Feldman, Jacob (1971). Sets of boundedness and continuity for the canonical normal process. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2, 357–368. Univ. Calif. Press.

    Google Scholar 

  • Fernandez, Pedro J. (1974). Almost surely convergent versions of sequences which converge weakly. Bol. Soc. Brasil. Math. 5 51–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos, P. (1950). Measure Theory. Princeton, Van Nostrand. 2d. printing, Springer, N. Y. 1974.

    Google Scholar 

  • Hoffmann-Jørgensen, J., and Niels Trolle Andersen (1984). Personal communication.

    Google Scholar 

  • _____ (1984). Envelopes and perfect random variables (preprint, section of forthcoming book).

    Google Scholar 

  • Itô, K., and H. P. McKean Jr. (1974). Diffusion processes and their sample paths. Springer, N. Y. (2d. printing, corrected).

    MATH  Google Scholar 

  • Marczewski, E., and R. Sikorski (1948). Measures in nonseparable metric spaces. Colloq. Math. 1 133–139.

    MathSciNet  MATH  Google Scholar 

  • O’Reilly, N. E. (1974). On the weak convergence of empirical processes in sup-norm metrics. Ann. Probab. 2 642–651.

    Article  MathSciNet  MATH  Google Scholar 

  • Petrovskii, I. G. (1935). Zur ersten Randwertaufgabe der Wärmeleitungagleichung. Compositio Math. 1 383–419.

    MathSciNet  Google Scholar 

  • Pollard, D. B. (1982). A central limit theorem for empirical processes. J. Austral. Math. Soc. Ser. A 33 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Pyke, R. (1969). Applications of almost surely convergent constructions of weakly convergent processes. Lecture Notes in Math. 89 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Shorack, G. R. (1979). Weak convergence of empirical and quantile processes in sup-norm metrics via KMT-constructions. Stochastic Processes Applics. 9 95–98.

    Article  MathSciNet  MATH  Google Scholar 

  • _____, and J. Wellner (1982). Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probab. 10 639–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theor. Prob. Appls. 1 261–290 (English), 289–319 (Russian).

    Article  MathSciNet  Google Scholar 

  • Stute, W. (1982). The oscillation behavior of empirical processes, Ann. Probab. 10 86–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Talagrand, M. (1984). The Glivenko-Cantelli problem (preprint).

    Google Scholar 

  • Wichura, M. J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 284–291.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Anatole Beck Richard Dudley Marjorie Hahn James Kuelbs Michael Marcus

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Dudley, R.M. (1985). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. In: Beck, A., Dudley, R., Hahn, M., Kuelbs, J., Marcus, M. (eds) Probability in Banach Spaces V. Lecture Notes in Mathematics, vol 1153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0074949

Download citation

  • DOI: https://doi.org/10.1007/BFb0074949

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15704-5

  • Online ISBN: 978-3-540-39645-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics