Skip to main content

Scaling theory of the ordered phase of spin glasses

  • I. Spin Glasses
  • Conference paper
  • First Online:
Heidelberg Colloquium on Glassy Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 275))

Abstract

The ordered phase of short-range spin glasses is described in terms of the scaling behaviour associated with a zero-temperature fixed point. The main ingredient of the theory is the exponent y which describes the growth with length scale L of the characteristic coupling at zero temperature, J(L) − JLY. The exponent y is estimated numerically for dimensions d=2,3. For Ising spin glasses we find y − -0.3 for d=2 and y − 0.2 for d=3, implying scaling to weak (strong) coupling for d=2(3), i.e. the “lower critical dimension” d satisfies 2<d<3. For d<dℓ y determines the divergence of the correlation length for T→O, while for d>dℓ it determines the large scale properties of the ordered phase, such as the long-distance behaviour of connected correlation functions, G(r) ∝ r−y, and the singular response to a weak magnetic field, msing ∝ hd/(d-2y), The decay of the connected correlation functions at large distances implies that the pure-state overlap distribution function P(q) is trivial, in contrast to the Sherrington-Kirkpatrick model. The dynamics of the system are also discussed, as is the extension to vector spin models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherrington D and Kirkpatrick S, Phys Rev Lett 35, 1972 (1975).

    Article  Google Scholar 

  2. Kirkpatrick S and Sherrington D, Phys Rev B17, 4384 (1978).

    ADS  Google Scholar 

  3. Parisi G, J Phys A13, 1101, 1887, L115 (1980); Phil Mag B41, 677 (1980); Phys Rep 67, 97 (1980).

    ADS  Google Scholar 

  4. Parisi G, Phys Rev Lett 50, 1946 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  5. Mézard M, Parisi G, Sourlas N, Toulouse G and Virasoro M, Phys Rev Lett 52, 1146 (1984); J Physique 45, 843 (1984).

    Article  Google Scholar 

  6. Bray A J and Moore M A, J Phys C17, L463 (1984); Phys Rev B29, 340 (1985).

    ADS  Google Scholar 

  7. McMillan W L, Phys Rev B31, 340 (1985); B29, 4026 (1984)

    ADS  Google Scholar 

  8. Bhatt R N and Young A P, Phys Rev Lett 54, 924, (1985).

    Article  ADS  Google Scholar 

  9. Ogielski A T and Morgenstern I, Phys Rev Lett 54, 928 (1985)

    Article  ADS  Google Scholar 

  10. Morris B W, Colborne S G, Moore M A, Bray A J and Canisius J, J Phys C19, 1157 (1986).

    ADS  Google Scholar 

  11. McMillan W L, Phys Rev B31, 342 (1985).

    ADS  Google Scholar 

  12. Jain S and Young A P, (to be published).

    Google Scholar 

  13. Fisher D S and Huse D A, Phys Rev Lett 56, 1601 (1986).

    Article  ADS  Google Scholar 

  14. Bray A J and Moore M A, J Phys C17, L613 (1984).

    ADS  Google Scholar 

  15. Edwards S F and Anderson P W, J Phys F5, 965 (1975).

    Article  ADS  Google Scholar 

  16. Moore M A and Bray A J, J Phys C18, L699 (1985)

    MathSciNet  ADS  Google Scholar 

  17. de Almeida J R L and Thouless D J, J Phys A11, 983 (1978).

    ADS  Google Scholar 

  18. Green J E, Moore M A and Bray A J, J Phys C16, L815 (1983).

    ADS  Google Scholar 

  19. Bray A J, Moore M A and Young A P, Phys Rev Lett, 56, 2641 (1986).

    Article  ADS  Google Scholar 

  20. Anderson P W and Pond C M, Phys Rev Lett 40, 903 (1978).

    Article  ADS  Google Scholar 

  21. Banavar J R and Cieplak M, Phys Rev Lett 48, 832 (1982); Phys Rev B36, 2662 (1982), Phys Rev B28, 3813 (1984).

    Article  ADS  Google Scholar 

  22. Cieplak M and Banavar J R, Phys Rev B29, 469 (1984).

    ADS  Google Scholar 

  23. Morgenstern I and Binder K, Phys Rev B22, 288 (1980); Z Phys B 39, 227 (1980).

    ADS  Google Scholar 

  24. Huse D and Morgenstern I, Phys Rev B32, 3021 (1985).

    ADS  Google Scholar 

  25. Binder K, Z Phys B48, 319 (1982); YoungA P, Phys Rev Lett 50, 917 (1983); McMillan W L, Phys Rev B28, 5216 (1983).

    Article  ADS  Google Scholar 

  26. Cheung H F and McMillan W L, J Phys C16, 7033 (1983).

    ADS  Google Scholar 

  27. Ogielski A T, Phys Rev B32, 7384 (1985).

    ADS  Google Scholar 

  28. Southern B W and Young A P, J Phys C10, 2179 (1977).

    ADS  Google Scholar 

  29. Kirkpatrick S, Phys Rev B15, 1533 (1977).

    ADS  Google Scholar 

  30. Binder K, Z Phys B48, 319 (1982), Kinzel W and Binder K, Phys Rev Lett 50, 1509 (1983), Phys Rev B29, 1300 (1984).

    Article  ADS  Google Scholar 

  31. Fisher D S and Sompolinsky H, Phys Rev Lett 54, 1063 (1984).

    Article  ADS  Google Scholar 

  32. See Ref 23. Also Kinzel W, Z Phys B46, 59 (1982).

    ADS  Google Scholar 

  33. Cheung H F and McMillan W L, J Phys C16, 7027 (1983).

    ADS  Google Scholar 

  34. Kirkpatrick S, Phys Rev B16, 4630 (1977).

    ADS  Google Scholar 

  35. McMillan W L, Phys Rev B28, 5216 (1983).

    ADS  Google Scholar 

  36. Bray A J and Moore M A (unpublished).

    Google Scholar 

  37. Caflisch R G, Banavar J R and Cieplak M, J Phys C18, L991 (1985).

    ADS  Google Scholar 

  38. Bovier A and Fröhlich J, J. Stat. Phys. 44, 347 (1986).

    Article  ADS  Google Scholar 

  39. Bray A J and Moore M A, J Phys C12, 79 (1978).

    ADS  Google Scholar 

  40. Chalupa J, Solid State Commun 222, 315 (1977).

    Article  ADS  Google Scholar 

  41. Bray A J, Moore M A and Reed P, J Phys C12, L477 (1979).

    ADS  Google Scholar 

  42. Young A P, Bray A J and Moore M A, J Phys C17, 1, 149 (1984).

    ADS  Google Scholar 

  43. Elderfield D, J Phys A17, L307 (1984).

    MathSciNet  ADS  Google Scholar 

  44. Thouless D J, Anderson P W and Palmer R G, Phil Mag 35, 593 (1977).

    Article  ADS  Google Scholar 

  45. Bray A J, Sompolinsky H, and Yu C, J Phys C. To be published.

    Google Scholar 

  46. Bray A J and Moore M A, J Phys A18 L683 (1985).

    MathSciNet  ADS  Google Scholar 

  47. Imry Y and Ma S K, Phys Rev Lett 35, 1399 (1975).

    Article  ADS  Google Scholar 

  48. McMillan W L, J Phys C17, 3179 (1984).

    ADS  Google Scholar 

  49. Pytte E and Rudnick J, Phys Rev B19, 3603 (1979).

    ADS  Google Scholar 

  50. Harris A B, Lubensky T C and Chen J H, Phys Rev Lett 36, 415 (1976).

    Article  ADS  Google Scholar 

  51. Bray A J and Roberts S A, J Phys C13, 5405 (1980).

    ADS  Google Scholar 

  52. Sompolinsky H and Zippelius A, Phys Rev Lett 50, 1297 (1983).

    Article  ADS  Google Scholar 

  53. De Dominicis C and Kondor I, J Phys Lett (Paris) 45, L205 (1984).

    Google Scholar 

  54. Kondor I, Private Communication.

    Google Scholar 

  55. Binder K and Young A P, Rev Mod Phys. To be published.

    Google Scholar 

  56. McKay S R, Berker A N and Kirkpatrick S, Phys Rev Lett, 48, 767 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  57. Binder K,in Festkörperprobleme (Advances in Solid State Physics) vol XVII 55, Treusch J, (ed), Vieweg, Braunschweig (1977).

    Google Scholar 

  58. Bray A J and Moore M A, J Phys C15, L765 (1982).

    ADS  Google Scholar 

  59. Van Hemmen J L, Phys Rev Lett 49, 409 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  60. Provost J P and Vallée G, Phys Rev Lett 50, 598 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  61. Bray A J and Moore M A, J Phys C14, 2629 (1981); Henley C L, Ann Phys, NY 156, 368 (1985).

    MathSciNet  ADS  Google Scholar 

  62. Bray A J and Moore M A, J Phys C15, 3897 (1982).

    ADS  Google Scholar 

  63. Levy P M and Fert A, Phys Rev B23, 4667 (1981).

    ADS  Google Scholar 

  64. McMillan W L, J Phys C17, 3189 (1984).

    ADS  Google Scholar 

  65. Moore M A, J Phys A19, L211 (1986).

    ADS  Google Scholar 

  66. Green J E, Bray A J and Moore M A, J Phys A15, 2307 (1982).

    ADS  Google Scholar 

  67. Bray A J and Moore M A, J Phys C18, L139 (1985).

    MathSciNet  ADS  Google Scholar 

  68. In general we expect a single universality class for discrete distributions where the possible J values are commensurate; the incommensurate case probably belongs to a different universality class.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. L. van Hemmen I. Morgenstern

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Bray, A.J., Moore, M.A. (1987). Scaling theory of the ordered phase of spin glasses. In: van Hemmen, J.L., Morgenstern, I. (eds) Heidelberg Colloquium on Glassy Dynamics. Lecture Notes in Physics, vol 275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057515

Download citation

  • DOI: https://doi.org/10.1007/BFb0057515

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17777-7

  • Online ISBN: 978-3-540-47819-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics