Skip to main content

Problems of postsynaptic autogenous and recurrent inhibition in the mammalian spinal cord

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 73

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 73))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E.D., Zotterman, Y.: The impulses produced by sensory nerve-endings. II. The response of a single end-organ. J. Physiol. (Lond.) 61, 151–171 (1926).

    Google Scholar 

  • Alnaes, E.: Static and dynamic properties of Golgi tendon organs in the anterior tibial and soleus muscles of the cat. Acta physiol. scand. 70, 176–187 (1967).

    Google Scholar 

  • Alston, W., Angel, R.W., Fink, F.S., Hofmann, W. W.: Motor activity following the silent period in human muscle. J. Physiol. (Lond.) 190, 189–202 (1967).

    Google Scholar 

  • Andersen, P., Eccles, J.: Inhibitory phasing of neuronal discharge. Nature (Lond.) 196, 645–647 (1962).

    Google Scholar 

  • Andersen, P., Eccles, J. C., Sears, T. A.: The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. (Lond.) 174, 370–399 (1964).

    Google Scholar 

  • Anderson, J. H.: Dynamic characteristics of Golgi tendon organs. Brain Res. 67, 531–537 (1974).

    Google Scholar 

  • Angel, R.W., Eppler, W., Iannone, A.: Silent period produced by unloading of muscle during voluntary contraction. J. Physiol. (Lond.) 180, 864–870 (1965).

    Google Scholar 

  • Balthasar, K.: Morphologie der spinalen Tibialis-und Peronaeus-Kerne bei der Katze. Arch. Psychiat. Nervenkr. 188, 345–378 (1952).

    Google Scholar 

  • Barker, D.: The innervation of the muscle spindle. Quart. J. micr. Sci. 89, 143–186 (1948).

    Google Scholar 

  • Barker, D.: Some results of a quantitative histological investigation of stretch receptors in limb muscles of the cat. J. Physiol. (Lond.) 149, 7–9 P (1959).

    Google Scholar 

  • Barker, D.: The innervation of mammalian skeletal muscle. In: Myotatic, kinesthetic and vestibular mechanisms. Ciba Foundation Symp., p. 3–19, ed. A.V.S. De Reuck and J. Knight. London: J. & A. Churchill 1967.

    Google Scholar 

  • Barrios, P., Clauss, H., Haase, J.: Die reflektorische Erregbarkeit primärer Spindelafferenzen der Fußextensoren der Katze. Pflügers Arch. 305, 262–268 (1969).

    Google Scholar 

  • Benecke, R., Hellweg, C., Meyer-Lohmann, J.: Activity and excitability of Renshaw cells in non-decerebrate and decerebrate cats. Exp. Brain Res. 21, 113–124 (1974).

    Google Scholar 

  • Benecke, R., Meyer-Lohmann, J.: Effects of an antispastic drug (γ-(4-chlorophenyl)-γ-aminobutyric acid) on Renshaw cell activity. J. Neuropharmacol. 13, 1067–1075 (1974).

    Google Scholar 

  • Bergmans, J., Burke, R., Lundberg, A.: Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602 (1969).

    Google Scholar 

  • Bianconi, R., Granit, R., Reis, D. J.: The effects of extensor muscle spindles and tendon organs on homonymous motoneurones in relation to γ-bias and curarization. Acta physiol. scand. 61, 331–347 (1964a).

    Google Scholar 

  • Bianconi, R., Granit, R., Reis, D. J.: The effects of flexor muscle spindles and tendon organs on homonymous motoneurones in relation to γ-bias and curarization. Acta physiol. scand. 61, 348–356 (1964b).

    Google Scholar 

  • Biscoe, T. J., Krnjević, K.: Chloralose and the activity of Renshaw cells. Exp. Neurol. 8, 395–405 (1963).

    Google Scholar 

  • Bracchi, F., Decandia, M., Gualtierotti, T.: Frequency stabilization in the motor centers of spinal cord and caudal brain stem. Amer. J. Physiol. 210, 1170–1177 (1966).

    Google Scholar 

  • Bradley, K., Easton, D.M., Eccles, J.C.: An investigation of primary or direct inhibition. J. Physiol. (Lond.) 122, 474–488 (1953).

    Google Scholar 

  • Bradley, K., Eccles, J.C.: Analysis of the fast afferent impulses from thigh muscles. J. Physiol. (Lond.) 122, 462–473 (1953).

    Google Scholar 

  • Bridgman, C.F., Shumpert, E.E., Eldred, E.: Insertions of intrafusal fibers in muscle spindles of the cat and other mammals. Anat. Rec. 164, 391–401 (1969).

    Google Scholar 

  • Brooks, V.B.: Contrast and stability in the nervous system. Trans. N. Y. Acad. Sci 21, 387–394 (1959).

    Google Scholar 

  • Brooks, V.B., Kameda, K., Nagel, R.: Recurrent inhibition in the cat's cerebral cortex. In: Inhibitory neuronal mechanisms, p. 327–331, ed. C.V. Euler, S. Skoglund and U. Söderberg. London: Pergamon Press 1968.

    Google Scholar 

  • Brooks, V.B., Stoney, S.D.: Motor mechanisms: The role of the pyramidal system in motor control. Ann. Rev. Physiol. 33, 337–392 (1971).

    Google Scholar 

  • Brooks, V.B., Wilson, V. J.: Localization of stretch reflexes by recurrent inhibition. Science 127, 472–473 (1958).

    Google Scholar 

  • Brooks, V.B., Wilson, V.J.: Recurrent inhibition in the cat's spinal cord. J. Physiol. (Lond.) 146, 380–391 (1959).

    Google Scholar 

  • Brown, M.C., Lawrence, D.G., Matthews, P.B.C.: Reflex inhibition by Ia afferent input of spontaneously discharging motoneurons in the decerebrate cat. J. Physiol. (Lond.) 198, 5–7 P (1968 a).

    Google Scholar 

  • Brown, M.C., Lawrence, D.G., Matthews, P.B.C.: Antidromic inhibition of presumed fusimotor neurones by repetitive stimulation of the ventral root in the decerebrate cat. Experientia (Basel) 24, 1210–1211 (1968b).

    Google Scholar 

  • Bryan, R.N., Trevino, D.L., Willis, W.D.: Evidence for a common location of alpha and gamma motoneurons. Brain Res. 38, 193–196 (1972).

    Google Scholar 

  • Burke, R.E.: Group Ia synaptic input to fast and slow twitch motor units of cat triceps surae. J. Physiol. (Lond.) 196, 605–630 (1968a).

    Google Scholar 

  • Burke, R.E.: Firing patterns of gastocnemius motor units in the decerebrate cat. J. Physiol. (Lond.) 196, 631–654 (1968b).

    Google Scholar 

  • Burke, R.E., Fedina, L., Lundberg, A.: Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurons. J. Physiol. (Lond.) 214, 305–326 (1971).

    Google Scholar 

  • Cajal see Ramon Y Cajal, S.

    Google Scholar 

  • Campa, J.F., Engel, W.K.: Histochemical classification of anterior horn neurons. Neurology (Minneap.) 20, 386 (1970).

    Google Scholar 

  • Ciaccio, G.V.: Sur les plaques nerveuses finales dans les tendons des vertébr és. Arch. ital. Biol. 14, 31–57 (1891).

    Google Scholar 

  • Cleveland, S., Haase, J., Ross, H.-G., Wand, P.: Antidromic conditioning of reciprocally inhibited monosynaptic extensor and flexor reflexes in decerebrate cats. Pflügers Arch. 337, 219–228 (1972)

    Google Scholar 

  • Coombs, J.S., Eccles, J.C., Fatt, P.: The action of the inhibitory synaptic transmitter. Aust. J. Sci. 16, 1–5 (1953).

    Google Scholar 

  • Coombs, J.S., Eccles, J.C., Fatt, P.: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potentials. J. Physiol. (Lond.) 130, 326–373 (1955).

    Google Scholar 

  • Coppin, C.M.L., Jack, S.S.B., Maclennan, C.R.: A method for the selective electrical activation of tendon organ afferent fibres from the cat soleus muscle. J. Physiol. (Lond.) 210, 18–20 P (1970).

    Google Scholar 

  • Csillik, B., Tóth, L., Karcsu, S.: Acetylcholinesterase activity of Renshaw elements and Renshaw bulbs. A light-and electron-histochemical study. J. Neurocytol. 2, 441–455 (1973).

    Google Scholar 

  • Curtis, D.R.: The pharmacology of central and peripheral inhibition. Pharmacol. Rev. 15, 333–364 (1963).

    Google Scholar 

  • Curtis, D.R.: Actions of drugs on single neurones in the spinal cord and thalamus. Brit. med. Bull. 21, 5–9 (1965).

    Google Scholar 

  • Curtis, D.R., Duggan, A.W., Johnston, G.A.R.: Glycine, strychnine, picrotoxin and spinal inhibition. Brain Res. 14, 759–762 (1969).

    Google Scholar 

  • Curtis, D.R., Eccles, J.C., Eccles, R.M.: Pharmacological studies on spinal reflexes. J. Physiol. (Lond.) 136, 420–434 (1957).

    Google Scholar 

  • Curtis, D. R., Eccles, R. M.: The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. (Lond.) 141, 435–445 (1958a).

    Google Scholar 

  • Curtis, D.R., Eccles, R.M.: The effect of diffusional barriers upon the pharmacology of cells within the central nervous system. J. Physiol. (Lond.) 141, 446–463 (1958b).

    Google Scholar 

  • Curtis, D.R., Hösli, L., Johnston, G.A.R., Johnston, I.H.: Glycine and spinal inhibition. Brain Res. 5, 112–114 (1967).

    Google Scholar 

  • Curtis, D.R., Hösli, L., Johnston, G.A.R., Johnston, I.A.: The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp. Brain Res. 5, 235–258 (1968).

    Google Scholar 

  • Curtis, D.R., Johnston, G. A.R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97–188 (1974).

    Google Scholar 

  • Curtis, D.R., Phillis, J.W., Watkins, J. C.: The depression of spinal neurons by γ-amino-n-butyric acid and β-alanine. J. Physiol. (Lond.) 146, 185–203 (1959).

    Google Scholar 

  • Curtis, D.R., Phillis, J.W., Watkins, J. C.: Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961).

    Google Scholar 

  • Curtis, D. R., Ryall, R. W.: Nicotinic and muscarinic receptors of Renshaw cells. Nature (Lond.) 203, 652–653 (1964).

    Google Scholar 

  • Curtis, D.R., Ryall, R.W.: The excitation of Renshaw cells by cholinomimetics. Exp. Brain Res. 2, 49–65 (1966a).

    Google Scholar 

  • Curtis, D.R., Ryall, R.W.: The acetylcholine receptors of Renshaw cells. Exp. Brain Res. 2, 66–80 (1966b).

    Google Scholar 

  • Curtis, D.R., Ryall, R.W.: The synaptic excitation of Renshaw cells. Exp. Brain Res. 2, 81–96 (1966 c).

    Google Scholar 

  • Dale, H.H.: Pharmacology and nerve endings. Proc. roy. Soc. Med. 28, 319–332 (1935).

    Google Scholar 

  • Dale, H. H.: Transmission of effects from nerve-endings. London: Oxford University Press 1952.

    Google Scholar 

  • Davidoff, R.A., Aprison, M.H., Werman, R.: The effects of strychnine on the inhibition of interneurons by glycine and γ-amino-butyric acid. Int. J. Neuropharmacol. 8, 191–194 (1969).

    Google Scholar 

  • Denny-Brown, D.: On inhibition as a reflex accompaniment of the tendon jerk and of other forms of active muscular response. Proc. roy. Soc. B 103, 321–336 (1928).

    Google Scholar 

  • Denny-Brown, D.: On the nature of postural reflexes. Proc. roy. Soc. B 104, 252–301 (1929).

    Google Scholar 

  • Devanandan, M.S., Eccles, R.M., Yokota, T.: Muscle stretch and the presynaptic inhibition of the group Ia pathway to motoneurones. J. Physiol. (Lond.) 179, 430–441 (1965).

    Google Scholar 

  • Diete-Spiff, K., Pascoe, J.E.: The spindle motor nerves to the gastrocnemius muscle of the rabbit. J. Physiol. (Lond.) 149, 120–134 (1959).

    Google Scholar 

  • Dietrichson, P.: The silent period in spastic, rigid, and normal subjects during isotonic and isometric muscle contractions. Acta neurol. scand. 47, 183–193 (1971).

    Google Scholar 

  • Duggan, A. W.: The differential sensitivity to L-glutamate and L-aspartate of spinal inter-neurones and Renshaw cells. Exp. Brain Res. 19, 522–528 (1974).

    Google Scholar 

  • Eccles, J. C.: Studies on the flexor reflex. III. The central effects produced by an antidromic volley. Proc. roy. Soc. Med. B 107, 557–585 (1931).

    Google Scholar 

  • Eccles, J. C.: Synaptic and neuromuscular transmission. Ergebn. Physiol. 38, 339–444 (1936).

    Google Scholar 

  • Eccles, J. C.: The neurophysiological basis of mind. The principles of neurophysiology. Oxford: Clarendon Press 1953.

    Google Scholar 

  • Eccles, J.C.: The central action of antidromic impulses in motor nerve fibres. Pflügers Arch. 260, 385–415 (1955).

    Google Scholar 

  • Eccles, J.C.: The physiology of nerve cells. Baltimore: John Hopkins Press 1957.

    Google Scholar 

  • Eccles, J.C.: Inhibitory pathways to motoneurons. In: Nervous inhibition, p. 47–60, ed. E. Florey. Oxford: Pergamon Press 1961a.

    Google Scholar 

  • Eccles, J.C.: The synaptic mechanism for postsynaptic inhibition. In: Nervous inhibition, p. 71–86, ed. E. Florey. Oxford: Pergamon Press 1961b.

    Google Scholar 

  • Eccles, J.C.: Postsynaptic and presynaptic inhibitory actions in the spinal cord. In: Progress in brain research vol. 1. Brain mechanisms, p. 1–22, ed. G. Moruzzi, Amsterdam: Elsevier 1963.

    Google Scholar 

  • Eccles, J. C.: The physiology of synapses. p. 1–916. Berlin-New York-Heidelberg: Springer 1964.

    Google Scholar 

  • Eccles, J.C.: Pharmacology of central inhibitory synapses. Brit. med. Bull. 21, 19–25 (1965).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Fatt, P.: Pharmacological investigations on a central synapse operated by acetylcholine. J. Physiol. (Lond.) 131, 154–169 (1956a).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Ito, M.: Distribution of recurrent inhibition among motoneurones. J. Physiol. (Lond.) 159, 479–499 (1961a).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological studies on Gamma motoneurones. Acta physiol. scand. 50, 32–40 (1960).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.) 159, 461–478 (1961b).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Lundberg, A.: Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley. J. Physiol. (Lond.) 136, 527–546 (1957 a).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Lundberg, A.: The convergence of monosynaptic excitatory afferents onto many different species of alpha motoneurones. J. Physiol. (Lond.) 137, 22–50 (1957b).

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Lundberg, A.: Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J. Physiol. (Lond.) 138, 227–252 (1957c).

    Google Scholar 

  • Eccles, J.C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.) 126, 524–562 (1954).

    Google Scholar 

  • Eccles, J.C., Fatt, P., Landgren, S.: Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 19, 75–98 (1956b).

    Google Scholar 

  • Eccles, J.C., Sherrington, C.S.: Studies on the flexor reflex. VI. Inhibition. Proc. roy. Soc. B 109, 91–113 (1931).

    Google Scholar 

  • Eccles, R.M., Lundberg, A.: Supraspinal control of interneurones mediating spinal reflexes. J. Physiol. (Lond.) 147, 565–584 (1959 a).

    Google Scholar 

  • Eccles, R.M., Lundberg, A.: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol. 97, 199–221 (1959b).

    Google Scholar 

  • Eldred, E., Granit, R., Merton, P.A.: Supraspinal control of the muscle spindles and its significance. J. Physiol. (Lond.) 122, 498–523 (1953).

    Google Scholar 

  • Eldred, E., Hagbarth, K.E.: Facilitation and inhibition of gamma efferents by stimulation of certain skin areas. J. Neurophysiol. 17, 59–65 (1954).

    Google Scholar 

  • Ellaway, P.H.: Antidromic inhibition of fusimotor neurones. J. Physiol. (Lond.) 198, 39–40 P (1968).

    Google Scholar 

  • Ellaway, P.H.: Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and the spinal cat. J. Physiol. (Lond.) 216, 419–439 (1971).

    Google Scholar 

  • Erulkar, S.D., Nichols, C.W., Popp, M.B., Koelle, G.B.: Renshaw elements: localization and acetylcholinesterase content. J. Histochem. Cytochem. 16, 128–135 (1968).

    Google Scholar 

  • Fedina, L., Hultborn, H.: Facilitation from ipsilateral primary afferents of interneuronal transmission in the Ia inhibitory pathway to motoneurones. Acta physiol. scand. 86, 59–81 (1972).

    Google Scholar 

  • Forbes, A., Smith, O.C., Lambert, E.F., Caveness, W.F., Derbyshire, A. J.: The central inhibitory mechanism investigated by means of antidromic impulses. Amer. J. Physiol. 103, 131–142 (1933).

    Google Scholar 

  • Frank, K., Fuortes, M. G. F.: Unitary activity of spinal interneurones of cats. J. Physiol. (Lond.) 131, 424–435 (1956).

    Google Scholar 

  • Fromm, Chr., Haase, J.: Positionsempfindlichkeit und fusimotorische Aktivierung prätibialer Muskelspindelendigungen vor und nach Deafferentierung. Pflügers Arch. 321, 242–252 (1970).

    Google Scholar 

  • Fromm, Chr., Haase, J., Noth, J.: Length-dependent autogenetic inhibition of extensor γ-motoneurones in the decerebrate cat. Pflügers Arch. 346, 251–262 (1974)

    Google Scholar 

  • Fromm, Chr., Noth, J.: Autogenetic inhibition of γ-motoneurons in the spinal cat uncovered by Dopa injection. Pflügers Arch. 349, 247–256 (1974).

    Google Scholar 

  • Fromm, Chr., Noth, J.: Vibration-induced autogenetic inhibition of γ-motoneurons. Brain Res. 83, 495–497 (1975).

    Google Scholar 

  • Fulton, J.F., Pi-Suñer, J.: A note concerning the probable function of various afferent end-organs in skeletal muscle. Amer. J. Physiol. 83, 554–562 (1928).

    Google Scholar 

  • Gelfan, S.: Neurone and synapse populations in the spinal cord: indication of role in total integration. Nature (Lond.) 198, 162–163 (1963).

    Google Scholar 

  • Gill, P.K., Kuno, M.: Properties of phrenic motoneurones. J. Physiol. (Lond.) 168, 258–273 (1963a).

    Google Scholar 

  • Gill, P. K., Kuno, M.: Excitatory and inhibitory actions on phrenic motoneurones. J. Physiol. (Lond.) 168, 274–289 (1963b).

    Google Scholar 

  • Golgi, C: Sulla fina anatomia degli organi centrali del sistema nervoso. Milano: Hoepli 1886.

    Google Scholar 

  • Golgi, C.: Untersuchungen über den feineren Bau des centralen und peripherischen Nervensystems. Jena: Gustav Fischer 1894.

    Google Scholar 

  • Graham Brown, T.: On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 48, 18–46 (1914).

    Google Scholar 

  • Granit, R.: Reflex self-regulation of the muscle contraction and autogenetic inhibition. J. Neurophysiol. 13, 351–372 (1950).

    Google Scholar 

  • Granit, R.: Reflexes to stretch and contraction of antagonists around ankle joint. J. Neurophysiol. 15, 269–279 (1952).

    Google Scholar 

  • Granit, R.: Receptors and sensory perception. A discussion of aims, means, and results of electro-physiological research into the process of reception. New Haven: Yale University Press 1955.

    Google Scholar 

  • Granit, R.: Neuromuscular interaction in postural tone of the cat's isometric soleus muscle. J. Physiol. (Lond.) 143, 387–402 (1958).

    Google Scholar 

  • Granit, R.: Circuit analysis of postural reflexes and the relative significance of alpha and gamma motoneurones. XXI Congreso international de Ciencias fisiologicas, Buenos Aires, 9–15 de Agost 1959.

    Google Scholar 

  • Granit, R.: Regulation of discharge rate by inhibition especially by recurrent inhibition. In: Nervous inhibition, p. 61–70, ed. E. Florey. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Granit, R.: Quantitative aspects of control of the discharge frequency of nerve cells. XXII International Congr. Physiol. Sciences, Leiden, vol. 1, p. 22–27 (1962).

    Google Scholar 

  • Granit, R.: Recurrent inhibition as a mechanism of control. In: Progress in brain research, vol. 1, Brain mechanisms, p. 23–37, ed. G. Moruzzi, A. Fessard and H.H. Jasper. Amsterdam: Elsevier 1963.

    Google Scholar 

  • Granit, R.: The basis of motor control. Integrating the activity of muscles, alpha and gamma motoneurons and their leading control systems. p. 1–346. London: Academic Press 1970.

    Google Scholar 

  • Granit, R., Burke, R.E.: The control of movement and posture. Brain Res. 53, 1–28 (1973).

    Google Scholar 

  • Granit, R., Haase, J., Rutledge, L.T.: Recurrent inhibition in relation to frequency of firing and limitation of discharge rate of extensor motoneurones. J. Physiol. (Lond.) 154, 308–328 (1960).

    Google Scholar 

  • Granit, R., Kellerth, J.-O., Szumski, A.J.: Intracellular autogenetic effects of muscular contraction on extensor motoneurones. The silent period. J. Physiol. (Lond.) 182, 484–503 (1966).

    Google Scholar 

  • Granit, R., Pascoe, J. E., Steg, G.: The behaviour of tonic α and γ motoneurones during stimulation of recurrent collaterals. J. Physiol. (Lond.) 138, 381–400 (1957).

    Google Scholar 

  • Granit, R., Pompeiano, O., Waltman, B.: The early discharge of mammalian muscle spindles at onset of contraction. J. Physiol. (Lond.) 147, 399–418 (1959).

    Google Scholar 

  • Granit, R., Renkin, B.: Net depolarization and discharge rate of motoneurones as measured by recurrent inhibition. J. Physiol. (Lond.) 158, 461–475 (1961).

    Google Scholar 

  • Granit, R., Rutledge, L.T.: Surplus excitation in reflex action of motoneurones as measured by recurrent inhibition. J. Physiol. (Lond.) 154, 288–307 (1960).

    Google Scholar 

  • Granit, R., Ström, G. Autogenetic modulation of excitability of single ventral horn cells. J. Neurophysiol. 14, 113–132 (1951).

    Google Scholar 

  • Granit, R., Van Der Meulen, J. P.: The pause during contraction in the discharge of the spindle afferents from primary end organs in cat extensor muscle. Acta physiol. scand. 55, 231–244 (1962).

    Google Scholar 

  • Green, D.G., Kellerth, J.-O.: Intracellular autogenetic and synergistic effects of muscular contraction on flexor motoneurones. J. Physiol. (Lond.) 193, 73–94 (1967).

    Google Scholar 

  • Grillner, S.: The influence of DOPA on the static and dynamic fusimotor activity to the triceps surae of the spinal cat. Acta physiol. scand. 77, 490–509 (1969a).

    Google Scholar 

  • Grillner, S.: Supraspinal and segmental control of static and dynamic γ-motoneurones in the cat. Acta physiol. scand., Suppl. 327 (1969b).

    Google Scholar 

  • Grillner, S., Hongo, T., Lund, S.: Descending monosynaptic and reflex control of γ-motoneurones. Acta physiol. scand. 75, 592–613 (1969).

    Google Scholar 

  • Haase, J.: Die Transformation des Entladungsmusters der Renshaw-Zellen bei tetanischer antidromer Reizung. Pflügers Arch. ges. Physiol. 276, 471–480 (1963).

    Google Scholar 

  • Haase, J., Kuckuck, L., Noth, J.: Disinhibition der Extensor-Motoneurone nach intercollicularer Dezerebrierung. Pflügers Arch. 311, 148–158 (1969).

    Google Scholar 

  • Haase, J., Schlegel, J.-J., Ziesemer, G.: Die Verteilung genuiner fr üher Entladungen auf primäre und sekundäre Muskelspindelafferenzen. Pflügers Arch. 324, 134–145 (1971).

    Google Scholar 

  • Haase, J., Van Der Meulen, J.P.: The effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurones. J. Neurophysiol. 24, 510–520 (1961a).

    Google Scholar 

  • Haase, J., Van Der Meulen, J.P.: Die spezifische Wirkung der Chloralose auf die recurrente Inhibition. Pflügers Arch. ges. Physiol. 274, 272–280 (1961b).

    Google Scholar 

  • Haase, J., Vogel, B.: Die reflektorische Aktivierung prätibialer Muskelspindeln durch Spindelafferenzen. Pflügers Arch. 311, 168–178 (1969).

    Google Scholar 

  • Haase, J., Vogel, B.: Die Erregung der Renshaw-Zellen durch reflektorische Entladungen der α-Motoneurone. Pflügers Arch. 325, 14–27 (1971a).

    Google Scholar 

  • Haase, J., Vogel, B.: Direkte und indirekte Wirkungen supraspinaler Reizungen auf Renshaw-Zellen. Pflügers Arch. 325, 334–346 (1971 b).

    Google Scholar 

  • Hagbarth, K.-E.: EMG studies of stretch reflexes in man. EEG clin. Neurophysiol., Suppl. 25, 74–79 (1967).

    Google Scholar 

  • Hagbarth, K.-E., Naess, K.: The autogenetic inhibition during stretch and contraction of the muscle. Acta physiol. scand. 21, 41–53 (1950).

    Google Scholar 

  • Hansen, K., Hoffmann, P.: Weitere Untersuchungen über die Bedeutung der Eigenreflexe für unsere Bewegungen. I. Anspannungs-und Entlastungsreflexe. Z. Biol. 75, 293–304 (1922).

    Google Scholar 

  • Hartline, H.K., Ratliff, F., Miller, W.H.: Inhibitory interaction in the retina and its significance in vision. In: Nervous inhibition, p. 241–284, ed. E. Florey. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Henatsch, H.-D., Kaese, H.J., Langrehr, D., Meyer-Lohmann, J.: Einfluß des motorischen Cortex der Katze auf die Renshaw-Rückkopplungshemmung der Motoneurone. Pflügers Arch. ges. Physiol. 274, 51 (1961).

    Google Scholar 

  • Henatsch, H.D., Schulte, F.J.: Reflexerregung und Eigenhemmung tonischer und phasischer Alpha-Motoneurone während chemischer Dauererregung der Muskelspindeln. Pflügers Arch. ges. Physiol. 268, 134–147 (1958).

    Google Scholar 

  • Hoffmann, P.: Demonstration eines Hemmungsreflexes im menschlichen R ückenmark. Z. Biol. 70, 515–524 (1919).

    Google Scholar 

  • Hoffmann, P.: Untersuchungen über die Eigenreflexe (Sehnenreflexe) menschlicher Muskeln, p. 1–106. Berlin: Springer 1922.

    Google Scholar 

  • Hoffmann, P., Keller, C. J.: Über gleichzeitige willkürliche und k ünstliche Reizung von Nerven. Z. Biol. 87, 527–536 (1928).

    Google Scholar 

  • Holmgren, B., Merton, P. A.: Local feedback control of motoneurones. J. Physiol. (Lond.) 123, 47–48 P. (1954).

    Google Scholar 

  • Holmquist, B., Lundberg, A.: On the organization of the supraspinal inhibitory control of interneurones of various spinal reflex arcs. Arch. ital. Biol. 97, 340–356 (1959).

    Google Scholar 

  • Hongo, T., Jankowska, E., Lundberg, A.: The rubrospinal tract. II. Facilitation of interneuronal transmission in reflex paths to motoneurones. Brain Res. 7, 365–391 (1969).

    Google Scholar 

  • Houk, J., Henneman, E.: Responses of Golgi tendon organs to active contraction of the soleus muscle in the cat. J. Neurophysiol. 30, 466–481 (1967a).

    Google Scholar 

  • Houk, J., Henneman, E.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967b).

    Google Scholar 

  • Houk, J., Singer, J. J., Goldman, M.: An evalution of length and force feedback in decerebrate cats. J. Neurophysiol. 33, 784–811 (1970).

    Google Scholar 

  • Houk, J., Singer, J., Henneman, E.: Adequate stimulus for tendon organs with observation on mechanics of ankle joint. J. Neurophysiol. 34, 1051–1065 (1971).

    Google Scholar 

  • Hubbard, J.I., Llinás, R., Quastel, D. M. J.: Electrophysiological analysis of synaptic transmission, p. 265–293. London: Arnold 1969.

    Google Scholar 

  • Huber, G.C., De Witt, L.M.: A contribution on the nerve terminations in neuro-tendinous endorgans. J. comp. Neurol. 10, 159–208 (1900).

    Google Scholar 

  • Hufschmidt, H.-J.: Wird die Silent period nach direkter Muskelreizung durch Golgi-Sehnenorgane ausgelöst? Pflügers Arch. 271, 35–39 (1960a).

    Google Scholar 

  • Hufschmidt, H.-J.: Über die Willkürkontraktion des Parkinsonisten. Dtsch. Z. Nervenheilk. 181, 37–45 (1960b).

    Google Scholar 

  • Hufschmidt, H.-J.: Bausteine motorischer Regelung. Schweiz. Arch. Neurol. Psychiat. 87, 260–280 (1961).

    Google Scholar 

  • Hufschmidt, H.-J.: Golgi-Sehnenorgane und spinale Koordination der Motorik beim Kaninchen. Pflügers Arch. 275, 121–133 (1962).

    Google Scholar 

  • Hufschmidt, H.-J.: The demonstration of autogenic inhibition and its significance in human voluntary movement. In: Muscular afferents and motor control. Nobel Symp. I. p. 269–274. ed. R. Granit. Stockholm: Almquist und Wilsell 1966.

    Google Scholar 

  • Hultborn, H.: Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta physiol. scand., Suppl. 375, 3–42 (1972).

    Google Scholar 

  • Hultborn, H., Jankowska, E., Lindström, S.: Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. J. Physiol. (Lond.) 215, 591–612 (1971 a).

    Google Scholar 

  • Hultborn, H., Jankowska, E., Lindström, S. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. (Lond.) 215, 613–636 (1971b).

    Google Scholar 

  • Hultborn, H., Jankowska, E., Lindström, S: Relative contribution from different nerves to recurrent depression of Ia IPSPs in motoneurones. J. Physiol. (Lond.) 215, 637–664 (1971c).

    Google Scholar 

  • Hultborn, H., Jankowska, E., Lindström, S., Roberts, W.: Neuronal pathway of the recurrent facilitation of motoneurones. J. Physiol. (Lond.) 218, 495–514 (1971).

    Google Scholar 

  • Hultborn, H., Lundberg, A.: Reciprocal inhibition during the stretch reflex. Acta physiol. scand. 85, 136–138 (1972).

    Google Scholar 

  • Hultborn, H., Udo, M.: Convergence in the reciprocal Ia inhibitory pathway of excitation from descending pathways and inhibition from motor axon collaterals. Acta physiol. scand. 84, 95–108 (1972a).

    Google Scholar 

  • Hultborn, H., Udo, M.: Recurrent depression from motor axon collaterals of supraspinal inhibition in motoneurones. Acta physiol. scand. 85, 44–57 (1972b).

    Google Scholar 

  • Hunt, C. C.: The reflex activity of mammalian small-nerve fibres. J. Physiol. (Lond.) 115, 456–469 (1951).

    Google Scholar 

  • Hunt, C. C.: The effect of stretch receptors from muscle on the discharge of motoneurones. J. Physiol. (Lond.) 117, 359–379 (1952).

    Google Scholar 

  • Hunt, C. C.: Diameter and function of afferent fibres from muscle. Proc. XIX. Int. Physiol. Congr. Montreal, p. 485–486, 1953.

    Google Scholar 

  • Hunt, C. C.: Relation of function to diameter in afferent fibers of muscle nerves. J. gen. Physiol. 38, 117–131 (1954).

    Google Scholar 

  • Hunt, C.C., Kuffler, S.W.: Stretch receptor discharges during muscle contraction. J. Physiol. (Lond.) 113, 298–315 (1951).

    Google Scholar 

  • Hunt, C. C., Paintal, A. S.: Spinal reflex regulation of fusimotor neurones. J. Physiol. (Lond.) 143, 195–212 (1958).

    Google Scholar 

  • Hunt, C. C., Perl, E. R.: Spinal reflex mechanisms concerned with skeletal muscle. Physiol. Rev. 40, 538–579 (1960).

    Google Scholar 

  • Jankowska, E., Lindström, S. Morphological identification of Renshaw cells. Acta physiol. scand. 81, 428–430 (1971).

    Google Scholar 

  • Jankowska, E., Roberts, W.J.: Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones. J. Physiol. (Lond.) 222, 623–642 (1972).

    Google Scholar 

  • Jankowska, E., Smith, D. O.: Antidromic activation of Renshaw cells and their axonal projections. Acta physiol. scand 88, 198–214 (1973).

    Google Scholar 

  • Jansen, J.K.S., Nicolaysen, K., Walløe, L.: On the inhibition of transmission to the dorsal spinocerebellar tract by stretch of various ankle muscle of the cat. Acta physiol. scand. 70, 362–368 (1967).

    Google Scholar 

  • Jansen, J.K.S., Rudjord, T.: On the silent period and Golgi tendon organs of the soleus muscle of the cat. Acta physiol. scand. 62, 364–379 (1964).

    Google Scholar 

  • Jansen, J.K.S., Rudjord, T.: Dorsal spinocerebellar tract: response pattern of nerve fibers to muscle stretch. Science 149, 1109–1111 (1965).

    Google Scholar 

  • Job, C.: Über autogene Inhibition und Reflexumkehr bei spinalisierten und decerebrierten Katzen. Pflügers Arch. ges. Physiol. 256, 406–418 (1953).

    Google Scholar 

  • Jung, R.: In: The spinal cord. Ciba Foundation Symposium, p 130. London: J. & A. Churchill 1953.

    Google Scholar 

  • Kato, M., Fukushima, K.: Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat. Exp. Brain Res. 20, 135–143 (1974).

    Google Scholar 

  • Kellerth, J.-O: Aspects on the relative significance of pre-and postsynaptic inhibition in the spinal cord In: Structure and function of inhibitory neuronal mechanisms p. 197–212, ed. C. Von Euler, S. Skoglund and U. Söderberg. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Kernell, D.: Input resistance, electrical excitability, and size of ventral horn cells in cat spinal cord. Science 152, 1637–1640 (1966).

    Google Scholar 

  • Kobayashi, Y., Oshima, K., Tasaki, I.: Analysis of afferent and efferent systems in the muscle nerve of the toad and cat. J. Physiol. (Lond.) 117, 152–171 (1952).

    Google Scholar 

  • Koll, W., Schütz, R. M.: Die Wirkungen von Nikotin auf mono-und polysynaptische Reflexe der tiefspinalen Katze. Arch. int. Pharmacodyn. 79, 343–363 (1960).

    Google Scholar 

  • Kuffler, S. W., Hunt, C.C.: The mammalian small—nerve fibres: a system for efferent nervous regulation of muscle spindle discharge. Res. Publ. Ass. nerv. ment. Dis. 30, 24–47 (1952).

    Google Scholar 

  • Kuno, M.: Excitability following antidromic activation in spinal motoneurones supplying red muscles. J. Physiol. (Lond.) 149, 374–393 (1959).

    Google Scholar 

  • Laporte, Y., Bessou, P.: Etude des sous-groupes lent et rapide du groupe I (fibres affèrentes d'origine musculaire de grand diamétre) chez le chat. J. Physiol. (Paris) 49, 1025–1037 (1957).

    Google Scholar 

  • Laporte, Y., Lloyd, D.P.C: Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Amer. J. Physiol. 169, 609–621 (1952).

    Google Scholar 

  • Larson, M.D.: An analysis of the action of strychnine on the recurrent 1PSP and amino acid induced inhibitions. Brain Res. 15, 185–200 (1969).

    Google Scholar 

  • Liddell, E.G.T.: Spinal shock and some features of isolation-alteration of the spinal cord in cats. Brain 57, 386–400 (1934).

    Google Scholar 

  • Liddell, E.G.T.: The influence of experimental lesion of the spinal cord upon the jerk. II. Chronic lesions. With an appendix “a note on the “spinal” and “decerebrate” type of knee jerk in the cat”. Brain 59, 160–174 (1936).

    Google Scholar 

  • Liddell, E.G.T., Sherrington, C.S.: Reflexes in response to stretch (Myotatic reflexes). Proc. roy. Soc. B 96, 212–242 (1924).

    Google Scholar 

  • Lloyd, D.P.C.: Conduction and synaptic transmission of reflex response to stretch in spinal cat. J. Neurophysiol. 6, 317–326 (1943).

    Google Scholar 

  • Lloyd, D.P.C: Facilitation and inhibition of spinal motoneurons. J. Neurophysiol. 9, 421–438 (1946).

    Google Scholar 

  • Lloyd, D.P.C: After-currents, after-potentials, excitability, and ventral root electrotonus in spinal motoneurons. J. gen. Physiol. 35, 289–321 (1951).

    Google Scholar 

  • Lloyd, D.P.C.: A study of some twentieth century thoughts on inhibition in the spinal cord. In: Nervous inhibition, p. 13–31, ed. E. Florey. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Lloyd, D.P.C., Chang, H.-T.: Afferent fibers in muscle nerves. J. Neurophysiol. 11, 199–207 (1948).

    Google Scholar 

  • Longo, V.G., Martin, W.R., Unna, K.R.: A pharmacological study on the Renshaw cell. J. Pharmacol. exp. Ther. 129, 61–68 (1960).

    Google Scholar 

  • Lucas, M. E., Willis, W. D.: Identification of muscle afferents which activate interneurons in the intermediate nucleus. J. Neurophysiol. 37, 282–293 (1974).

    Google Scholar 

  • Lundberg, A., The supraspinal control of transmission in spinal reflex pathways. In: Recent advances in clinical neurophysiology, p. 35–46. EEG clin. Neurophysiol., Suppl. 25, 1967.

    Google Scholar 

  • Lundberg, A.: The significance of segmental spinal mechanisms in motor control. 4th Internat. Biophysics Congress, Moscow, p. 1–13 (1972).

    Google Scholar 

  • Lundberg, A., Voorhoeve, P.: Effects from the pyramidal tract on spinal reflex arcs. Acta physiol. scand. 56, 201–219 (1962).

    Google Scholar 

  • Maclean, J.B., Leffman, H.: Supraspinal control of Renshaw cells. Exp. Neurol. 18, 94–104 (1967).

    Google Scholar 

  • McCouch, G.P., Deering, I.D., Stewart, W.B.: Inhibition of knee jerk from tendon spindles of crureus. J. Neurophysiol. 13, 343–350 (1950).

    Google Scholar 

  • McLaughlin, B. J.: The fine structure of neurons and synapses in the motor nuclei of the cat spinal cord. J. comp. Neurol. 144, 429–460 (1972).

    Google Scholar 

  • Magladery, J.W., Teasdall, R.D., Park, A.M., Porter, W.E.: Excitation and inhibition of two-neurone reflexes by afferent impulses in the same nerve trunk. Bull. Johns Hopk. Hosp. 88, 520–537 (1951).

    Google Scholar 

  • Matthews, B.H.C.: Nerve endings in mammalian muscle. J. Physiol. (Lond.) 78, 1–33 (1933).

    Google Scholar 

  • Matthews, P.B.C. Muscle spindles and their motor control. Physiol. Rev. 44, 219–288 (1964).

    Google Scholar 

  • Matthews, P.B.C.: Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J. Physiol. (Lond.) 204, 365–393 (1969).

    Google Scholar 

  • Matthews, P. B. C.: Mammalian muscle receptors and their central actions. London: Edward Arnold 1972.

    Google Scholar 

  • Matthews, P. B. C.: The advances of the last decade of animal experimentation upon muscle spindles. In: New developments in electromyography and clinical neurophysiology, vol 3, p. 95–125, ed. J. E. Desmedt. Basel: S. Karger 1973a.

    Google Scholar 

  • Matthews, P. B. C.: A critique of the hypothesis that the spindle secondary endings contribute excitation to the stretch reflex. In: Control of Posture and Locomotion, p. 227–243, ed. R. B. Stein, K.G. Pearson, R. S. Smith, and J. B. Redford. New York: Plenum Press 1973b.

    Google Scholar 

  • Mellström, A. Recurrent and antidromic effects on the monosynaptic reflex during postnatal development in the cat. Acta physiol. scand. 82, 490–499 (1971).

    Google Scholar 

  • Merrillees, N. C. R.: Some observations on the fine structure of a Golgi tendon organ of a rat. In: Symposium on Muscle Receptors, ed. D. Barker. Hongkong: University Press 1962.

    Google Scholar 

  • Merton, P.A.: The silent period in a muscle of the human hand. J. Physiol. (Lond.) 114, 183–198 (1951).

    Google Scholar 

  • Mountcastle, V. B.: Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    Google Scholar 

  • Naka, K.-I.: Electrophysiology of the fetal spinal cord. II. Interaction among peripheral inputs and recurrent inhibition. J. gen. Physiol. 47, 1023–1038 (1964).

    Google Scholar 

  • Noske, W., Ross, H.-G., Cleveland, S., Haase, J.: Decrease of antidromic inhibition due to orthodromic tetanic stimuli. Pflügers Arch. 350, 223–230 (1974).

    Google Scholar 

  • Noth, J.: Aktivitätsänderungen der Extensor-Fusimotoneurone der Katze infolge Reizung niedrigschwelliger Muskelafferenzen. Pflügers Arch. 326, 231–239 (1971a).

    Google Scholar 

  • Noth, J.: Recurrente Hemmung der Extensor-Fusimotoneurone? Pflügers Arch. 329, 23–33 (1971b).

    Google Scholar 

  • Phillips, C. G.: Actions of antidromic pyramidal volleys on single Betz cells in the cat. Quart. J. exp. Physiol. 44, 1–25 (1959).

    Google Scholar 

  • Phillips, C. G.: Corticomotoneuronal organization. Arch. Neurol. (Chic.) 17, 188–195 (1967).

    Google Scholar 

  • Piercey, M. F., Goldfarb, J.: Discharge patterns of Renshaw cells evoked by volleys in ipsilateral cutaneous and high-threshold muscle afferents and their relationship to reflexes recorded in ventral roots. J. Neurophysiol. 37, 294–302 (1974).

    Google Scholar 

  • Piercey, M. F., Goldfarb, J., Ryall, R. W.: Effects of picrotoxin and bicuculline on the excitation and inhibition of Renshaw cells. Neuropharmacol. 12, 975–982 (1973).

    Google Scholar 

  • Pompeiano, O., Wand, P., Sontag, K.-H.: Excitation of Renshaw cells by orthodromic group Ia volleys following vibration of extensor muscles. Pflügers Arch. 347, 137–144 (1974).

    Google Scholar 

  • Poppele, R. E., Terzuolo, C. A.: Myotatic reflex: its input-output relation. Science 159, 743–745 (1968).

    Google Scholar 

  • Prestige, M. C.: Initial collaterals of motor axons within the spinal cord of the cat. J. comp. Neur. 126, 123–136 (1966).

    Google Scholar 

  • Proske, U., Lewis, D. M.: The effects of muscle stretch and vibration on fusimotor activity in the lightly anaesthesised cat. Brain Res. 46, 55–69 (1972).

    Google Scholar 

  • Ramon y Cajal, S.: Textura del sistema nervioso del hombre y de los vertebrados. N. Moya, Madrid 1899.

    Google Scholar 

  • Ramon y Cajal, S.: Textura del sistema nervioso del hombre y de los vertebrados. N. Moya, Madrid, vol. 2, pt. II, p. 519–1209. 1904.

    Google Scholar 

  • Ramon y Cajal, S.: Histologie du systéme nerveux de l'homme et des vert èbrès. Paris: Maloine 1909.

    Google Scholar 

  • Ratliff, F.: Mach Bands: Quantitative studies on neural networks in the retina, p. 1–365. San Francisco: Holden-Day 1965.

    Google Scholar 

  • Ratliff, F., Miller, W. H., Hartline, H. K.: Neural interaction in the eye and the integration of receptor activity. Ann. N. Y. Acad. Sci. 74, 210–222 (1958).

    Google Scholar 

  • Renshaw, B.: Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J. Neurophysiol. 4, 167–183 (1941).

    Google Scholar 

  • Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946)

    Google Scholar 

  • Rexed, B.: Some aspects of the cytoarchitectonics and synaptology of the spinal cord. In: Progress in brain research, vol. 11, p. 58–92. Organization of the spinal cord, ed. J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Roberts, W. J.: Tendon organ function. Brain Res. 28, 345–350 (1971).

    Google Scholar 

  • Roberts, W. J., Rosenthal, N. P., Terzuolo, C. A.: A control model of stretch reflex. J. Neurophysiol. 34, 620–634 (1971).

    Google Scholar 

  • Romanes, G. J.: The motor pools of the spinal cord. In: Progress in brain research, vol. 11, p. 93–119. Organization of the Spinal Cord, ed. J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Haase, J.: Quantitative relation of Renshaw cell discharges to monosynaptic reflex height. Pflügers Arch. 332, 73–79 (1972).

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Haase, J.: Response of Renshaw cells to minimal antidromic input at various frequencies. Pflügers Arch. 355, Suppl. R 91 (1975).

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Wolf, E., Haase, J.: Changes in the excitability of Renshaw cells due to orthodromic tetanic stimuli. Pflügers Arch. 344, 299–307 (1973).

    Google Scholar 

  • Ryall, R. W.: Renshaw cell mediated inhibition of Renshaw cells: Pattern of excitation and inhibition from impulses in motor axon collaterals. J. Neurophysiol. 33, 257–270 (1970).

    Google Scholar 

  • Ryall, R. W.: Excitatory convergence on Renshaw cells. J. Physiol. (Lond.) 226, 69–70 P (1972).

    Google Scholar 

  • Ryall, R. W., Piercey, M. F.: Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers. J. Neurophysiol. 34, 242–251 (1971).

    Google Scholar 

  • Ryall, R. W., Piercey, M. F., Polosa, C: Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J. Neurophysiol. 34, 700–707 (1971).

    Google Scholar 

  • Ryall, R. W., Piercey, M. F., Polosa, C: Strychnine-resistant mutual inhibition of Renshaw cells. Brain Res. 41, 119–129 (1972a).

    Google Scholar 

  • Ryall, R. W., Piercey, M. F., Polosa, C., Goldfarb, J.: Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons. J. Neurophysiol. 35, 137–148 (1972b).

    Google Scholar 

  • Sasaki, K.: Electrophysiological studies on oculomotor neurons of the cat. Jap. J. Physiol. 13, 287–302 (1963).

    Google Scholar 

  • Scheibel, M. E., Scheibel, A. B.: Are there Renshaw cells? Anat. Rec. 148, 332 (1964).

    Google Scholar 

  • Scheibel, M. E., Scheibel, A. B.: Spinal motoneurons, interneurons and Renshaw cells. A Golgi study. Arch. ital. Biol. 104, 328–353 (1966).

    Google Scholar 

  • Scheibel, M. E., Scheibel, A. B.: Inhibition and the Renshaw cell. A structural critique. Brain Behav. Evol. 4, 53–93 (1971).

    Google Scholar 

  • Schlegel, H.-J., Sontag, K.-H.: Reflektorische Aktivierung prätibialer Fusimotoneurone der Katze durch Reizung niedrigschwelliger antagonistischer Muskelafferenzen. Pflügers Arch. 319, 200–204 (1970).

    Google Scholar 

  • Schmidt, R. F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol. 63, 20–101 (1971).

    Google Scholar 

  • Schoultz, T. W., Swett, J. E.: The fine structure of Golgi tendon organs. J. Neurocytol. 1, 1–26 (1972).

    Google Scholar 

  • Schoultz, T. W., Swett, J. E.: Ultrastructural organization of the sensory fibers innervating the Golgi tendon organ. Anat. Rec. 179, 147–162 (1974).

    Google Scholar 

  • Severin, F. V., Orlovskii, G. N., Shik, M. L.: Work of the muscle receptors during controlled locomotion. Biofizika 12, 502–511 (1967).

    Google Scholar 

  • Sherrington, C. S.: On the anatomical constitution of nerves of skeletal muscles; with remarks on recurrent fibres in the ventral spinal nerve-root. J. Physiol. (Lond.) 17, 211–258 (1894).

    Google Scholar 

  • Sherrington, C. S.: On plastic tonus and proprioceptive reflexes. Quart. J. exp. Physiol. 2, 109–156 (1909).

    Google Scholar 

  • Sherrington, C. S.: Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. (Lond.) 40, 28–121 (1910).

    Google Scholar 

  • Sherrington, C. S.: Reflex inhibition as a factor in the co-ordination of movements and postures. Quart. J. exp. Physiol. 6, 251–310 (1913).

    Google Scholar 

  • Sommer, J.: Der Entlastungsreflex des menschlichen Muskels. Dtsch. Z. Nervenheilk. 150, 83–92 (1940).

    Google Scholar 

  • Sontag, K.-H.: The effects on primary and secondary spindle afferents of fusimotor reflex during ramp and sinusoidal muscle stretch. Pflügers Arch. 331, 266–274 (1972).

    Google Scholar 

  • Spencer, W. A., Kandel, E. R.: Hippocampal neuron responses in relation to normal and abnormal function. In: Physiologie de l'Hippocampe. Coll. int. centre national recherche sci. (Paris) 107, 71–103 (1962).

    Google Scholar 

  • Sprague, J. M.: Motor and propriospinal cells in the thoracic and lumbar ventral horn of the rhesus monkey. J. comp. Neurol. 95, 103–123 (1951).

    Google Scholar 

  • Sprague, J. M., Hongchien, HA: The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat, and the dendritic organization of the motor nuclei. In: Progress in brain research, vol. 11, p. 120–154. Organization of the spinal cord, ed. J. C. Eccles and J. P. Schade. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Struppler, A., Landau, W. M., Mehls, H.: Analyse des Entlastungsreflexes (ER) am Men-schen. Pflügers Arch. ges. Physiol. 279, R 18–19 (1964).

    Google Scholar 

  • Stuart, D. G., Goslow, G. E., Mosher, C. G., Reinking, R. M.: Stretch responsiveness of Golgi tendon organs. Exp. Brain Res. 10, 463–476 (1970).

    Google Scholar 

  • Stuart, D. G., Mosher, C.G., Gerlach, R. L., Reinking, R. M.: Mechanical arrangement and transducing properties of Golgi tendon organs. Exp. Brain Res. 14, 274–292 (1972).

    Google Scholar 

  • Sumner, A. J.: Properties of Ia and Ib afferent fibres serving stretch receptors of the cat's medial gastrocnemius muscle. Proc. Univ. Otago Med. Sch. 39, 3–5 (1961).

    Google Scholar 

  • Swett, J. E., Eldred, E.: Distribution and numbers of stretch receptors in medial gastrocnemius and soleus muscles of the cat. Anat. Rec. 137, 453–460 (1960).

    Google Scholar 

  • Szentágothai, J.: The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta morph. Acad. Sci. hung. 8, 287–309 (1958).

    Google Scholar 

  • Szentágothai, J.: Anatomical aspects of inhibitory pathways and synapses. In: Nervous inhibition, p. 32–46, ed. E. Florey. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Szentágothai, J.: Synaptic architecture of the spinal motoneuron pool. In: Recent advances in clinical neurophysiology. Electroenceph. clin. Neurophysiol. n25, Suppl. p. 4–19. Amsterdam: Elsevier 1967.

    Google Scholar 

  • Taugner, R., Culp, W.: Über die Wirkung von Nikotin auf das R ückenmark der Katze. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 220, 423–432 (1953).

    Google Scholar 

  • Taylor, W. K.: A model of learning mechanisms in the brain. In: Progress in brain research, vol. 17, Cybernetics of the nervous system, p. 369–397, ed. N. Wiener and J. P. Schadé. Amsterdam: Elsevier 1965.

    Google Scholar 

  • Terzuolo, C. A., Viviani, P.: Parameters of motion and EMG activities during some simple motor tasks in normal subjects and cerebellar patients. In: The cerebellum, epilepsy and behavior, p. 173–215, ed. J. S. Cooper, M. Riklan, R. S. Snider. New York: Plenum 1973.

    Google Scholar 

  • Thomas, R. C, Wilson, V. J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 211–213 (1965).

    Google Scholar 

  • Thomas, R. C., Wilson, V. J.: Recurrent interactions between motoneurons of known location in the cervical cord of the cat. J. Neurophysiol. 30, 661–674 (1967).

    Google Scholar 

  • Tönnies, J. F.: Die Erregungssteuerung im Zentralnervensystem. Arch. Psychiat. Nervenkr. 182, 478–535 (1949).

    Google Scholar 

  • Tönnies, J. F., Jung, R.: Über rasch wiederholte Entladungen der Motoneurone und die Hemmungsphase des Beugereflexes. Pflügers Arch. ges. Physiol. 250, 667–693 (1948).

    Google Scholar 

  • van Keulen, L. C. M.: Morphology of Renshaw cells. Pflügers Arch. 328, 235 P (1971).

    Google Scholar 

  • Voorhoeve, P. E., Rey, J. G.: Inhibition récurrente des décharges fusimotrices, présumées statiques, chez le chat. J. Physiol. (Paris) 65, 314–315 A (1972).

    Google Scholar 

  • Voorhoeve, P. E., van Kanten, W.: Reflex behaviour of fusimotor neurones of the cat upon electrical stimulation of various afferent fibres. Acta physiol. pharmacol. neerl. 10, 391–407 (1962).

    Google Scholar 

  • Weight, F. F.: Cholinergic mechanisms in recurrent inhibition of motoneurons. Psychopharmacology: A review of progress, 1957–1967, p. 69–75. Washington: Government Printing Office 1968.

    Google Scholar 

  • Werman, R., Davidoff, R. A., Aprison, M. H.: Glycine and postsynaptic inhibition in cat spinal cord. Physiologist 9, 318 (1966).

    Google Scholar 

  • Werman, R., Davidoff, R. A., Aprison, M. H.: Inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31, 81–95 (1968).

    Google Scholar 

  • Willis, W. D.: The localization of functional groups of interneurons. In: The interneuron, p. 267–287, ed. A. B. Brazier. Berkeley-Los Angeles: Univ. of Calif. Press 1969.

    Google Scholar 

  • Willis, W. D.: The case for the Renshaw cell. Brain Behav. Evol. 4, 5–52 (1971).

    Google Scholar 

  • Willis, W. D., Willis, J. C: Location of Renshaw cells. Nature (Lond.) 204, 1214–1215 (1964).

    Google Scholar 

  • Willis, W. D., Willis, J. C.: Properties of interneurons in the ventral spinal cord. Arch. ital. Biol. 104, 354–386 (1966).

    Google Scholar 

  • Wilson, V. J.: Recurrent facilitation of spinal reflexes. J. gen. Physiol. 42, 703–713 (1959).

    Google Scholar 

  • Wilson, V. J.: Regulation and function of Renshaw cell discharge. In: Muscular afferents and motor control. Nobel Symposium I, p. 317–329, ed. R. Granit. Stockholm: Almquist u. Wiksell 1966.

    Google Scholar 

  • Wilson, V. J., Burgess, P. R.: Intracellular study of recurrent facilitation. Science 134, 337–338 (1961).

    Google Scholar 

  • Wilson, V. J., Burgess, P. R.: Disinhibition in the cat spinal cord. J. Neurophysiol. 25, 392–404 (1962a).

    Google Scholar 

  • Wilson, V. J., Burgess, P. R.: Effects of antidromic conditioning on some motoneurons and interneurons. J. Neurophysiol. 25, 636–650 (1962 b).

    Google Scholar 

  • Wilson, V. J., Talbot, W. H.: Recurrent conditioning in the cat spinal cord. Differential effect of meprobamate on recurrent facilitation and inhibition. J. gen. Physiol. 43, 495–502 (1960).

    Google Scholar 

  • Wilson, V. J., Talbot, W. H.: Integration at an inhibitory interneurone: Inhibition of Renshaw cells. Nature (Lond.) 200, 1325–1327 (1963).

    Google Scholar 

  • Wilson, V. J., Talbot, W. H., Diecke, F. P. J.: Distribution of recurrent facilitation and inhibition in cat spinal cord. J. Neurophysiol. 23, 144–153 (1960).

    Google Scholar 

  • Wilson, V. J., Talbot, W. H., Kato, M.: Inhibitory convergence upon Renshaw cells. J. Neurophysiol. 27, 1063–1079 (1964).

    Google Scholar 

  • Wohlfart, G., Henriksson, K. G.: Observations on the distribution, number and innervation of Golgi musculo-tendinous organs. Acta anat. (Basel) 41, 192–204 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this chapter

Cite this chapter

Haase, J., Cleveland, S., Ross, HG. (1975). Problems of postsynaptic autogenous and recurrent inhibition in the mammalian spinal cord. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 73. Reviews of Physiology, Biochemistry and Pharmacology, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034660

Download citation

  • DOI: https://doi.org/10.1007/BFb0034660

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07357-4

  • Online ISBN: 978-3-540-37572-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics