Skip to main content

Neural network model of striatal complex

  • Biological Foundations of Neural Computation
  • Conference paper
  • First Online:
Biological and Artificial Computation: From Neuroscience to Technology (IWANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Included in the following conference series:

Abstract

Basal ganglia bridges posterior and anterior neocortices, serving a variety of functions which are involved in execution and planning of complex motor and cognitive sequences. We forward a motor production model which is based on known anatomical, physiological and behavioral studies of basal ganglia involvement in production of complex motor sequences in mammals (see

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, DeLong M. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. Journal of Neurophysiology, 1985 Jun, 53(6):1401–16.

    Google Scholar 

  2. Alexander, DeLong M. Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. Journal of Neurophysiology, 1985 Jun, 53(6):1417–30.

    Google Scholar 

  3. Alexander, M. Crutcher, and M. DeLong. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research 85:119–46 1990.

    Google Scholar 

  4. Alexander, M. DeLong, and P. Strick. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9:357–81, 1986.

    Google Scholar 

  5. Alexander, G. and Crutcher, M. Functional Architecture of Basal Ganglia Circuits: Neural Substrates of Parallel Processing. 1990. TINS 13(7):266–71.

    Google Scholar 

  6. Angulo, J. & McEwen, B. Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Research Reviews 19 (1994) 1–28.

    Google Scholar 

  7. Bliss and T. Lomo. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232:331–356, 1973.

    Google Scholar 

  8. Calabresi, P. Maj, A. Pisani, N. Mercuri, and G. Bernardi. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. Journal of Neuroscience, 12(11):4224–33, 1992.

    Google Scholar 

  9. Calabresi, P., Pisani, A., Mercuri, N. and Bernardi, G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. TINS (1996) 19, 19–24.

    Google Scholar 

  10. Cambell G., Eckardt M., and Weight F. Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis. Brain Research, 333:261–270, 1985.

    Google Scholar 

  11. Carpenter, K. Nakano, and R. Kim. Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. Journal of Comparative Neurology, 165(4):401–15, February 1976.

    Google Scholar 

  12. Carpenter M., Carleton S., Keller J., and Conte P. Connections of the subthalamic nucleus in the monkey. Brain Research, 1981 Nov 9, 224(1):1–29.

    Google Scholar 

  13. Canteras N., Shammah-Lagnado S., Silva B., and Riccardo J. Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Research, 513:43–59, 1990.

    Google Scholar 

  14. Chang H., Kita H., and Kitai S. The fine structure of the rat subthalamic nucleus: an electron microscope study. Journal of Comparative Neurology. 221: 113–123, 1983.

    Google Scholar 

  15. Chesselet M. and Delfs J. Basal ganglia and movement disorders: an update. TINS. 19: 417–22, 1996.

    Google Scholar 

  16. Dubois, B., Defontaines, B., Deweer, B., Malpani, C., and Pillon, B. Cognitive and Behavioral Changes in Patients with Focal Lesions of the Basal Ganglia. Advances in Neurology, Vol. 65. 1995. 29–41.

    Google Scholar 

  17. Flaherty and A. Graybiel. Output architecture of the primate putamen. Journal of Neuroscience, 13(8):3222–37, 1993.

    Google Scholar 

  18. Freund, J. Powell, and A. Smith. Tyrosine hydroxylase-immunoreacive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience, 13(4):1189–1215, 1984.

    Google Scholar 

  19. Fuster J. Frontal lobes. Current Opinion in Neurobiology 3:160–165, 1993.

    Google Scholar 

  20. Garsia-Munoz, S. Young, and P. Groves. Presynaptic long-term changes in excitability of the corticostriatal pathway. Neuroreport, 3(4):357–60, 1992.

    Google Scholar 

  21. Garris, M. Design and collection of a handwriting sample image database. Social Science Computer Review, Summer 1992, vol.10, (no.2):196–214.

    Google Scholar 

  22. Gerfen. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15:285–320, 1992.

    Google Scholar 

  23. Goldman-Rakic. Cellular and circuit basis of working memory in prefrontal cortex of non-human primates. Progress in Brain Research, 85:325–35, 1990.

    Google Scholar 

  24. Grace, A. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug and Alcohol Dependence 37 (1995) 111–129

    Google Scholar 

  25. Graybiel A. Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neurosciences, 7(13), 1990.

    Google Scholar 

  26. Graybiel, A. et. al. The Basal Ganglia and Adaptive Motor Control, 1994, Science 265: 1826–31.

    Google Scholar 

  27. Groenewegen, H. Berendse, J. Wolters, and A. Lohman. The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Progress in Brain Research, 85:95–116, 1990.

    Google Scholar 

  28. Guyon I. Handwriting synthesis from handwritten glyphs. International Workshop on Frontiers in Handwriting Recognition V, University of Essex, Great Britain, 1996.

    Google Scholar 

  29. Hazrati L. and Parent A. Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L. Brain research. 569: 226–340, 1992.

    Google Scholar 

  30. Hedreen J. and DeLong M.. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. Journal of Comparative Neurology, 304(4):569–95, 1991.

    Google Scholar 

  31. Kawaguchi, Y., Wilson, C., Augood, S., & Emson, P. Striatal Interneurons: Chemical, Physiological and Morphological Characterization. 1995. TINS 18(12) 527:35.

    Google Scholar 

  32. Kimura, M. Role of basal ganglia in behavioral learning. Neuroscience Research 22 (1995) 353–358.

    Google Scholar 

  33. Kilborn, R. Granger, and G. Lynch. Effects of LTP on response selectivity of simulated cortical neurons. J. Cognitive Neuroscience, 1996. (in press).

    Google Scholar 

  34. Kirkwood, S. Dudek, J. Gold, C. Aizenman, and M. Bear. Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science, 260(5113):1518–21, 1993.

    Google Scholar 

  35. Kitai S. and Deniau, J. Cortical inputs to the subthalamus: intracellular analysis. Brain research, 241: 411–415, 1981.

    Google Scholar 

  36. Kita, T. Kita, and S. Kitai. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Experimental Brain Research, 60(1):54–62, 1985.

    Google Scholar 

  37. Kita, H. Kita, and S. Kitai. Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Research, 300(1):129–39, 1984.

    Google Scholar 

  38. Kitai S. and Kita H. Anatomy and physiology of the subthalamic nucleus: a driving force in the basal ganglia. In M.B. Carpenter and A. Jayaraman (Eds.) The Basal Ganglia II — Structure and Function: Current Concepts, Plenum Press, New York, pp. 357–373, 1987.

    Google Scholar 

  39. Kombian and R. Malenka. Simultaneous LTP of non-NMDA-and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature, 368(6468):242–6, 1994.

    Google Scholar 

  40. Larson and G. Lynch. Theta pattern stimulation and the induction of LTP: the sequence in which synapses are stimulated determines the degree to which they potentiate. Brain Research, 489:49–58, 1989.

    Google Scholar 

  41. Larson, D. Wong, and G. Lynch. Patterned stimulation at the theta frequency is optimal for induction of long-term potentiation. Brain Research, 386:347–350, 1986.

    Google Scholar 

  42. Malenka. Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78(4):535–8, 1994.

    Google Scholar 

  43. Parent, A. Comparative neurobiology of the basal ganglia. New York: J. Wiley, 1986.

    Google Scholar 

  44. Parent, A. Extrinsic connections of the basal ganglia. Trends in Neuroscience, 13(7), 1990.

    Google Scholar 

  45. Parent, Aand Hazrati, L. Anatomical aspects of information processing in primate basal ganglia, 1993, TINS 16(3):111–6

    Google Scholar 

  46. Parent, A and Hazrati, L. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews 20(1995) 91–127.

    Google Scholar 

  47. Parent, A and Hazrati, A. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia. Brain Research Reviews 20(1995) 128–154.

    Google Scholar 

  48. Pennartz, R. Ameerun, H. Groenewegen, and H. L. da Silva. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. European Journal of Neuroscience, 5(27):107–17, February 1993.

    Google Scholar 

  49. Schell and P. Strick. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. Journal of Neuroscience, 4(2):539–60, February 1984.

    Google Scholar 

  50. Smith, T. Wichmann, and M. DeLong. The external pallidum and the subthalamic nucleus send convergent synaptic inputs onto the single neurones in the internal pallidal segment in monkey: anatomical organization and functional significance. The basal ganglia IV, Percheron (eds.). 1994.

    Google Scholar 

  51. Uno and N. Ozawa. Long-term potentiation of the amygdalo-striatal synaptic transmission in the cource of development of amygdaloid kindling in cats. Neuroscience Research, 12(1):251–62, October 1991.

    Google Scholar 

  52. Walsh. Depression of excitatory synaptic input in rat striatal neurons. Brain Research 608(1)123–8, 1993.

    Google Scholar 

  53. Wilson. Dendritic morphology, inward rectification, and the functional properties of neostrital neurons. in single neuron computation. McKenna, Davis and Zornetzer, eds. 1991.

    Google Scholar 

  54. Wilson and P. Groves. Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Research, 220(1):67–80, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aleksandrovsky, B., Brücher, F., Lynch, G., Granger, R. (1997). Neural network model of striatal complex. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032468

Download citation

  • DOI: https://doi.org/10.1007/BFb0032468

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics