Skip to main content

Basic remote sensing signatures of large, deeply eroded impact structures

  • Chapter
  • First Online:
Impacts and the Early Earth

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 91))

Abstract

Orbital remote sensing has discovered a number of impact structures on Earth. Complex structures eroded below allochthonous breccias and sheets of impact melt typically reveal a multicircular bull‘s-eye pattern when the projectile struck a subhorizontally bedded sedimentary target. These structures are striking because of steeply dipping strata in the central uplift, sometimes encircling a crystalline plug. The central anomaly is usually surrounded by an annulus representing a shallow ring-shaped syncline that develops during the cratering process. If not exposed, vegetation, drainage, and weathering products can delineate the bedrock geology. In crystalline targets, the signatures of central uplift and ring syncline are much more subtle, and hard to recognize by satellite imagery. At large structures, however, traces of slumping faults at the crater rim may remain perceptible as curved drainage or scarps. In particular radar systems are potentially useful for detecting such features. The presently known cratering record indicates that more deeply eroded impact structures exist, and this especially in crystalline terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baudemont D, Fedorowich J (1996) Structural control of uranium mineralization at the Dominique-Peter deposit, Saskatchewan. Econ Geol 91: 855–874

    Google Scholar 

  • Beliaev KD, Uvadiev LI, Shulga TF (1976) Regularities of the allocation of central-type massifs of the Kola Peninsula. Akademiya Nauk SSSR Doklady 226: 163–165 (in Russian.)

    Google Scholar 

  • Bischoff L, Prinz T (1994) Der Araguainha-Krater in Brasilien. Geowissenschaften 12: 354–360

    Google Scholar 

  • Blom RG, McHone JF, Crippen RE (1998) Satellite detection of possible 770 m diameter impact crater at 18 degrees 9 minutes north 50 degrees 4 minutes east Yemen Arab Republic. Lunar Planet Sci, 29: #1559

    Google Scholar 

  • Blumberg DG, McHone JF, Kuzmin R, Greeley R (1995) Radar imaging of impact craters by SIR-C/X-SAR.. Lunar Planet Sci, 26: 139–140

    Google Scholar 

  • Bunting JA, Brakel AT, Commander DP (1982) Nabberu, Western Australia. 1: 250 000 Geol Series map and explanatory notes. Geol Surv Western Australia

    Google Scholar 

  • Butler HR (1994) Lineament analysis of the Sudbury multiring impact structure. In: Dressler BO GSA Spec Pap 293: 319–329

    Google Scholar 

  • Crosta AP (1987) Impact structures in Brazil. In: Pohl J (ed) Research in terrestrial impact structures, Springer-Verlag, Berlin, pp 30–38

    Google Scholar 

  • Deutsch A, Grieve RAF, Averman M, Bischoff L, Brockmeyer P, Buhl D, Lakomy R, Müller-Mohr V, Ostermann M, Stöffler D (1995) The Sudbury Structure (Ontario, Canada): a tectonically deformed multi-ring impact basin. Geol Rundsch 84: 697–709

    Google Scholar 

  • Dietz RS, French B (1973) Two probable astroblemes in Brazil. Nature 244: 561–562

    Google Scholar 

  • Dressler BO (1984) The effects of the Sudbury event and the intrusion of the Sudbury Igneous Complex on the footwall rocks of the Sudbury structure. In: Pye EG, Naldrett AJ, Giblin PE (eds), The geology and ore deposits of the Sudbury structure; Ontario Geol Surv, Spec Vol 1, pp 97–136

    Google Scholar 

  • Garvin JB, Schnetzler CC, Grieve RAF (1992) Characteristics of large terrestrial impact structures as revealed by remote sensing studies. Tectonophys 216: 45–62

    Google Scholar 

  • Garvin JB, Schnetzler CC (1993) Remote sensing signatures of terrestrial impact features. EOS, Suppl, Transactions, AGU 74: 387

    Google Scholar 

  • Glikson AY (1996) A compendium of Australian impact structures, possible impact structures, and ejecta occurrences. AGSO J Austral Geol Geophys 16: 373–375

    Google Scholar 

  • Grieve RAF, Robertson PB, Dence MR, (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Schultz PH, Merrill RB (eds) Multiring basins. Proc Lunar Planet Sci 12A: 37–57

    Google Scholar 

  • Grieve RAF (1984) The impact cratering rate in recent time. Proc Lunar Planet Sci, Part 2, J Geophys Res Suppl 89: B403–B408

    Google Scholar 

  • Grieve RAF, Wood CA, Garvin JB, McLaughlin G, McHone JF (1988) Astronaut's guide to terrestrial impact craters. LPI Tech Rep 88-03, Lunar Planet Inst, Houston, Texas

    Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Intern Geol Rev 36: 105–151

    Google Scholar 

  • Grieve RAF, Rupert J, Smith J, Therriault A (1995) The record of terrestrial impact cratering. GSA Today 5: 189–196

    Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies. Earth Moon Planets 72: 357–376

    Google Scholar 

  • Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. AGSO J Austral Geol Geophys 16: 399–420

    Google Scholar 

  • Henkel H (1992) Geophysical aspects of meteorite impact craters in eroded shield environment, with special emphasis on electrical resistivity. Tectonophys 216: 63–89

    Google Scholar 

  • Higgins M, Tait L (1990) A possible new impact structure near Lac de la Presqu'île, Québec, Canada. Meteoritics 25: 235–236

    Google Scholar 

  • Juhlin C, Pedersen LB (1987) Reflection seismic investigations of the Siljan impact structure, Sweden. J Geophys Res 92: 14113–14122

    Google Scholar 

  • Juhlin C, Pedersen LB (1993) Further constraints on the formation of the Siljan impact crater from seismic reflection studies. Geol Fören Stockholm Förhand 115: 151–158

    Google Scholar 

  • Koeberl C (1994) African meteorite impact craters: characteristics and geological importance. J African Earth Sci 18: 263–295

    Google Scholar 

  • Koeberl C and Anderson RR (1996) Manson and company: Impact structures in the United States. In: Koeberl C, Anderson RR (eds) the Manson impact structure: Anatomy of an impact crater. Geol Soc America Spec Paper 302, pp 1–29

    Google Scholar 

  • McHone JF (1979) Riachão Ring, Brazil: A possible meteorite crater discovered by the Apollo astronauts. NASA SP-412: 193–202

    Google Scholar 

  • McHone JF, Greeley R (1987) Talemzane: Algerian impact crater detected on SIR-A orbital imaging radar. Meteoritics 22: 253–264

    Google Scholar 

  • McHone JF, Blumberg DG, Greeley R, Underwood JR (1995) Space shuttle radar images of terrestrial impact structures: SIR-C/X-SAR. Meteoritics 30: 543

    Google Scholar 

  • Melosh HJ (1989) Impact Cratering. A geologic process. Oxford University Press, Oxford

    Google Scholar 

  • Milton DJ, Glikson AY, Brett R (1996) Gosses Bluff — a latest Jurassic impact structure, central Australia. Part 1: geological structure, stratigraphy, and origin. AGSO J Austral Geol Geophys 16: 453–486

    Google Scholar 

  • Morgan J, Warner M, Brittan J, Buffler R, Camargo A, Christeson G, Denton P, Hildebrand A, Hobbs R, Macintyre H, Mackenzie G, Maguire P, Marin L, Nakamura Y, Pilikington M, Sharpton V, Snyder D, Suarez G, Trejo A (1997) Size and morphology of the Chicxulub impact crater. Nature 390: 472–476

    Google Scholar 

  • Pesonen LJ (1996) The impact cratering record of Fennoscandia. Earth Moon Planets 72: 377–393

    Google Scholar 

  • Prinz T (1996) Multispectral remote sensing of the Gosses Bluff impact crater, central Australia (N.T.) by using Landsat-TM and ERS-1 data. ISPRS J Photogram Remote Sens 51: 137–149

    Google Scholar 

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. AGSO J Austral Geol Geophys 16: 379–398

    Google Scholar 

  • Spray JG, Thompson LM (1995) Friction melt distribution in a multi-ring impact basin. Nature 373: 130–132

    Google Scholar 

  • Theilen-Willige B (1982) The Araguainha astrobleme/Central Brazil. Geol Rundsch 71: 318–327

    Google Scholar 

  • Theilen-Willige B (1987) The use of airborne and spaceborne radar images for the detection and investigation of impact structures. In: Pohl J (ed) Research in terrestrial impact structures. Springer, Berlin, pp 115–130

    Google Scholar 

  • Vattenfall (1991) Scientific summary report of the deep gas drilling project in the Siljan Ring impact structure. Report, Vattenfall, Swedish State Power Board

    Google Scholar 

  • Wood CR, Spray JG (1998) Origin and emplacement of Offset Dykes in the Sudbury impact structure: Constraints from Hess. Meteor Planet Sci 33: 337–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Iain Gilmour Christian Koeberl

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Abels, A., Zumsprekel, H., Bischoff, L. (2000). Basic remote sensing signatures of large, deeply eroded impact structures. In: Gilmour, I., Koeberl, C. (eds) Impacts and the Early Earth. Lecture Notes in Earth Sciences, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027765

Download citation

  • DOI: https://doi.org/10.1007/BFb0027765

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67092-6

  • Online ISBN: 978-3-540-46578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics