Skip to main content

The preparation of visually guided saccades

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 106

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 106))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbas H, Mesulam MM (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431

    Article  PubMed  Google Scholar 

  • Bashinski HS, Bacharach VR (1980) Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Percept Psychophys 28:241–248

    PubMed  Google Scholar 

  • Becker W, Juergens R (1979) An analysis of the saccadic system by means of double step stimuli. Vis Res 19:967–983

    Article  PubMed  Google Scholar 

  • Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp Brain Res 6:69–80

    Article  PubMed  Google Scholar 

  • Boch R, Fischer B (1983) Saccadic reaction times and activation of prelunate cortex: parallel observations in trained rhesus monkeys. Exp Brain Res 50:201–210

    Article  PubMed  Google Scholar 

  • Boch R, Fischer B (1986) Further observations on the occurrence of express saccades in monkey. Exp Brain Res 63:487–494

    Article  PubMed  Google Scholar 

  • Boch R, Fischer B, Ramsperger E (1984) Express-saccades of the monkey: reaction times versus intensity, size, duration, and eccentricity of their targets. Exp Brain Res 55:223–231

    Article  PubMed  Google Scholar 

  • Boch R (1986) Unpublished observation and personal communication

    Google Scholar 

  • Bolz J, Rosner G, Waessle H (1982) Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. J Physiol 328:171–190

    PubMed  Google Scholar 

  • Boussaoud D, Joseph JP (1985) Role of the cat substantia nigra pars reticulata in eye and head movements. II. Effects of local pharmacological injections. Exp Brain Res 57:297–304

    Article  PubMed  Google Scholar 

  • Bronson GW (1981) The scanning patterns of human infants implication for visual learning. In: Lipsitt LP (ed) monographs on infancy. Ablex, Norwood NJ

    Google Scholar 

  • Bruce CJ, Goldberg ME (1984) Physiology of the frontal eye fields. Trends Neurosci 7:436–441

    Article  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53:603–635

    PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    PubMed  Google Scholar 

  • Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–772

    PubMed  Google Scholar 

  • Campos-Ortega JA, Hayhow WR (1972) On the organization of the visual cortical projection to the pulvinar in macaca mulatta. Brain Beh Evol 6:394–423

    Google Scholar 

  • Collin NG, Cowey A (1980) The effect of frontal eyefields and superior colliculi on visual stability and movement discrimination in rhesus monkey. Exp Brain Res 40:251–260

    Article  PubMed  Google Scholar 

  • Coren S, Hoenig P (1972) Effect of non-target stimuli upon length of voluntary saccades. Percept Mot Skills 34:499–508

    PubMed  Google Scholar 

  • Desimone R, Moran J (1985) Mechanisms for selective attention in area V4 and inferior temporal cortex of the macaque. Neurosci Abstr 364. 8:1245

    Google Scholar 

  • Deubel H, Wolf H, Hauske G (1982) Corrective saccades: effect of shifting the sacade goal. Vis Res 22:353–364

    Article  PubMed  Google Scholar 

  • Findlay JM (1982) Global visual processing for saccadic eye movements. Vis Res 22:1033–1045

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R (1981a) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp Brain Res 44:129–137

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R (1981b) Selection of visual targets activates prelunate cortical cells in trained rhesus monkeys. Exp Brain Res 41:431–433

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R (1982) Modifications of presaccadic activation of neurons in the extratriate cortex during prolonged training of rhesus monkeys in a visuo-oculomotor task. Neurosci Lett 30:127–131

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R (1983) Saccadic eye movements after extremely short reaction times in the monkey. Brain Res 260:21–26

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R (1985) Peripheral attention versus central fixation: modulation of the visual activity of prelunate cortical cells of the rhesus monkey. Brain Res 345:111–124

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R, Bach M (1981) Stimulus versus eye movements: comparison of neural activity in the striate and prelunate visual cortex (A17 and A19) of trained rhesus monkey. Exp Brain Res 43:69–77

    Article  PubMed  Google Scholar 

  • Fischer B, Boch R, Ramsperger E (1984) Express-saccades of the monkey: effects of daily training on probability of occurrence and reaction time. Exp Brain Res 55:232–242

    Article  PubMed  Google Scholar 

  • Fischer B, Ramsperger E (1984) Human express-saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57:191–195

    Article  PubMed  Google Scholar 

  • Fischer B, Ramsperger E (1986) Human express-saccades: effects of daily practice and randomization. Exp Brain Res 64:569–578

    Article  PubMed  Google Scholar 

  • Frost D, Poeppel E (1976) Different programming modes of human saccadic eye movements as a function of stimulus eccentricity: indication of a functional subdivision of the visual field. Biol Cybern 23:39–48

    Article  PubMed  Google Scholar 

  • Gentilucci M, Scandolare C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye positon. Exp Brain Res 50:464–468

    Article  PubMed  Google Scholar 

  • Goldberg ME, Bruce CJ (1981) Frontal eye fields in the monkey: eye movements remap the effective coordinates of visual stimuli. Neurosci Abstr 44. 4:131

    Google Scholar 

  • Goldberg ME, Bruce CJ (1985) Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vis Res 25:471–481

    Article  PubMed  Google Scholar 

  • Goldberg ME, Bushnell MC (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol 46:773–787

    PubMed  Google Scholar 

  • Goldberg ME, Bushnell MC, Bruce CJ (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp Brain Res 61:579–584

    Article  PubMed  Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455–472

    Article  PubMed  Google Scholar 

  • Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides accurate eye position information to the oculomotor systems. Science 221:1193–1195

    PubMed  Google Scholar 

  • Hering E (1879) Der Raumsinn und die Bewegungen der Augen. In: Hermann L (ed) Handbuch der Physiologie 3. Vogel, Leipzig, pp 343–601

    Google Scholar 

  • Hikosaka O, Wurtz RH (1981) The role of substantia nigra in the initiation of saccadic eye movements. In: Fuchs AF, Becker W (eds) Elsevier North Holland, Amsterdam

    Google Scholar 

  • Hikosaka O, Wurtz RH (1982) Visual fixation suppresses visual response of cells in monkey substantia nigra pars reticulata (ARVO 1982). Invest Ophthalmol Vis Sci 22:238

    Google Scholar 

  • Hikosaka O, Wurtz RH (1983) Effects on eye movements of a GABA agonist and antogonist injected into monkey superior colliculus. Brain Res 272:368–372

    Article  PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1985a) Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J Neurophysiol 53:266–291

    PubMed  Google Scholar 

  • Hikosaka O, Wurtz RH (1985b) Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. J Neurophysiol 53:292–308

    PubMed  Google Scholar 

  • Hochstein S, Maunsell JHR (1985) Dimensional attention effects in the responses of V4 neurons of the macaque monkey. Neurosci Abstr 364. 6:1244

    Google Scholar 

  • Holtzmann JD, Sidtis JJ, Volpe BT, Wilson DH, Gazzaniga MS (1981) Dissociation of spatial information for stimulus localization and the control of attention. Brain 104:861–872

    PubMed  Google Scholar 

  • Jay MF, Sparks DL (1984) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309:345–347

    Article  PubMed  Google Scholar 

  • Jonides J, Irwin DE, Yantis S (1982) Integrating visual information from successive fixations. Science 215:192–194

    PubMed  Google Scholar 

  • Joseph JP, Boussaoud D (1985) Role of the cat substantia nigra pars reticulata in eye and head movements. I. Neural activity. Exp Brain Res 57:286–296

    Article  PubMed  Google Scholar 

  • Jung R (1972) Introduction. — Conclusions: how do we see with moving eyes? Bibl Ophthal 82:1–6; 377–395

    PubMed  Google Scholar 

  • Keating EG, Gooley SG, Pratt SE, Kelsey JE (1983) Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res 269:145–148

    Article  PubMed  Google Scholar 

  • Kurtzberg D, Vaughan Jr HG (1982) Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Res 243:1–9

    Article  PubMed  Google Scholar 

  • Leichnetz GR, Spencer RF, Hardy SGP, Astruc J (1981) The prefrontal cortico tectal projection in the monkey: an anterograde and retrograde horseradish peroxidase study. Neurosci 6:1023–1041

    Article  Google Scholar 

  • Leichnetz GR, Smith DJ (1983) Prefrontal, frontal eye field, and area 6 projections to the paramedian pontine reticular formation (PPRF) in the monkey. Neurosci Abstr 220. 4:749

    Google Scholar 

  • Lynch JC, Graybiel AM (1983) Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Neurosci Abstr 220. 5:750

    Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389

    PubMed  Google Scholar 

  • MacKay DM (1973) Visual stability and voluntary eye movements. In: Jung R (ed) Central processing of visual information. Springer, Berlin Heidelberg New York, pp 307–331 (Handbook of sensory physiology, vol 7/3)

    Google Scholar 

  • Maioli MG, Squatrito S, Galletti C, Battaglini PP, Sanseverino ER (1983) Corticocortical connections from the visual region of the superior temporal sulcus to frontal eye field in the macaque. Brain Res 265:294–299

    Article  PubMed  Google Scholar 

  • Mayfrank L, Mobashery M, Kimmig H, Fischer B (1986) The role of fixation and visual attention on the occurrence of express saccades in man. Eur J Psychiatr Neurol Sci 235:269–275

    Article  Google Scholar 

  • Mays LE, Sparks DL (1980a) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43:207–232

    PubMed  Google Scholar 

  • Mays LE, Sparks DL (1980b) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165

    PubMed  Google Scholar 

  • Mikami A, Ito S-I, Kubota K (1982) Modifications of neuron activities of the dorsolateral prefrontal cortex during extrafoveal attention. Behav Brain Res 5:219

    Article  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parietoprecoccipital cortex in monkeys. Behav Brain Res 6:57–77

    Article  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in area V4 and the inferior temporal cortex of the macaque. Neurosci Abstr 364. 7:1245

    Google Scholar 

  • Motter BC, Mountcastle VB (1981) The functional properties of the lightsensitive neurons of the posterior parietal cortex studied in waking monkeys — foveal sparing and opponent vector organization. J Neurosci 1:3

    PubMed  Google Scholar 

  • Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 1:1218–1235

    PubMed  Google Scholar 

  • Newsome WT, Wurtz RH, Duersteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840

    PubMed  Google Scholar 

  • Newsome WT, Wurtz RH, Duersteler MR, Mikami A (1985) Punctate chemical lesions of striate cortex in the macaque monkey: effect on visually guided saccades. Exp Brain Res 58:393–399

    Article  Google Scholar 

  • Nuwer MR, Pribram KH (1979) Role of the inferotemporal cortex in visual selective attention. Electroenceph Clin Neurophysiol 46:389–400

    Article  PubMed  Google Scholar 

  • Petersen SE, Robinson DL, Keys W (1985) Pulvinar nuclei of the behaving rhesus monkey: visual responses and their modulation. J Neurophysiol 54:867–886

    PubMed  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Gray F, Brunet P (1986) Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 109:81–97

    PubMed  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874

    PubMed  Google Scholar 

  • Remington R, Pierce L (1984) Moving attention: evidence for time-invariant shifts of visual selective attention. Percept Psychophys 35:393–399

    PubMed  Google Scholar 

  • Reulen JPH (1984) Latency of visually evoked saccadic eye movements. I. Saccadic latency and the facilitation model. Biol Cybern 50:251–262

    Article  PubMed  Google Scholar 

  • Reulen RPH (1984) Latency of visually evoked saccadic eye movements. II. Temporal properties of the facilitation mechanism. Biol Cybern 50:263

    Article  PubMed  Google Scholar 

  • Richmond BJ, Wurtz RH (1980) Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. J Neurophysiol 43:1156–1167

    PubMed  Google Scholar 

  • Richmond BJ, Wurtz RH, Sato (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 50:1415–1432

    PubMed  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163

    Article  PubMed  Google Scholar 

  • Robinson DA (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis Res 12:1795–1808

    Article  PubMed  Google Scholar 

  • Robinson DL, Baizer JS, Dow BM (1980) Behavioral enhancement of visual responses of prestriate neurons of the rhesus monkey. Invest Ophthalmol Vis Sci 19:1120–1123

    PubMed  Google Scholar 

  • Robinson DL, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol 41:910–932

    PubMed  Google Scholar 

  • Robinson DL, Petersen SE (1985) Responses of pulvinar neurons to real and self-induced stimulus movement. Brain Res 338:392–394

    Article  PubMed  Google Scholar 

  • Robinson DL, Wurtz RH (1976) Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movements. J Neurophysiol 39:852–870

    PubMed  Google Scholar 

  • Sagi D, Julesz B (1985) “Where” and “what” in vision. Science 228:1217–1219

    PubMed  Google Scholar 

  • Sakata H, Shibutani H, Kawano K (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J Neurophysiol 43:1654–1672

    PubMed  Google Scholar 

  • Sandell JH, Schiller PH, Maunsell JHR (1984) The effect of superior colliculus and frontal eye field lesions on saccadic latency in the monkey. Perception 13:A6

    Google Scholar 

  • Saslow MG (1967) Effects of components of displacement-step stimuli upon latency of saccadic eye movements. J Opt Soc Am 57:1024–1029

    PubMed  Google Scholar 

  • Schiller PH (1977) The effect of superior colliculus ablation on saccades elicited by cortical stimulation. Brain Res 122:154–156

    Article  PubMed  Google Scholar 

  • Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179:162–164

    Article  PubMed  Google Scholar 

  • Schiller PH, Sandell JH (1983) Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp Brain Res 49:381–392

    Article  PubMed  Google Scholar 

  • Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:179–196

    Google Scholar 

  • Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179:162–164

    Article  PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1984) Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol 51:1175–1195

    PubMed  Google Scholar 

  • Schlag J, Schlag-Rey M (1985) Eye fixation units in the supplementary eye field of monkey. Neurosci Abstr 25. 23:82

    Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226:403420

    Article  Google Scholar 

  • Shibutani H, Sakata H, Hyvaerinen J (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp Brain Res 55:1–8

    Article  PubMed  Google Scholar 

  • Singer W, Zihl J, Poeppel E (1977) Subcortical control of visual thresholds in humans: evidence of modality specific and retinotopically organized mechanisms of selective attention. Exp Brain Res 29:173–190

    Article  PubMed  Google Scholar 

  • Sparks DL, Mays LE (1983) Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. J Neurophysiol 49:45–63

    PubMed  Google Scholar 

  • Sparks DL, Porter JD (1983) Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. J Neurophysiol 49:64–74

    PubMed  Google Scholar 

  • Steinmetz MA, Motter BC, Mountcastle VB (1985) Attentive fixation influences differentially the responses of visual neurons of prestriate and parietal areas of the cerebral cortex. Neurosci Abstr 297/9:1012

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, and Nansfield RJW (eds) Analyses of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Wagman JH, Krieger HP, Bender MB (1958) Eye movements elicited by surface and depth stimulation of the occipital lobe of macaca mulatta. J Comp Neurol 109:169–193

    Article  PubMed  Google Scholar 

  • Werth R, von Cramon D, Zihl J (1986) Neglect: Phänomene halbseitiger Vernachlässigung nach Hirnschädigung. Fortschr Neurol Psychiat 54:21–32

    PubMed  Google Scholar 

  • Wurtz RH (1969) Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J Neurophysiol 32:987–994

    PubMed  Google Scholar 

  • Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Ann Rev Neurosci 3:189–226

    Article  PubMed  Google Scholar 

  • Wurtz RH, Goldberg ME (1972) The primate superior colliculus and the shift of visual attention. Invest Ophthalmol 11:441–450

    PubMed  Google Scholar 

  • Wurtz RH, Goldberg ME, Robinson DL (1980) Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Progr Psychobiol Physiol Psychol 9:43–83

    Google Scholar 

  • Wurtz RH, Mohler CW (1976a) Organization of monkey superior colliculus: enhanced visual response of superficial layer cells. J Neurophysiol 39:745–762

    PubMed  Google Scholar 

  • Wurtz RH, Mohler CW (1976b) Enhancement of visual responses in monkey striate cortex and frontal eye fields. J Neurophysiol 39:766–772

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Fischer, B. (1987). The preparation of visually guided saccades. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 106. Reviews of Physiology, Biochemistry and Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027574

Download citation

  • DOI: https://doi.org/10.1007/BFb0027574

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17608-4

  • Online ISBN: 978-3-540-47713-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics