Skip to main content

Molecular catalysis by polyammonium receptors

  • Conference paper
  • First Online:
Biomimetic and Bioorganic Chemistry II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 132))

Abstract

Polyammonium salts are particularly well suited to the construction of host-guest systems possessing catalytic activity (molecular catalysts). In addition to the ease and variability in the build up of molecular frameworks inherent in this class of compounds the hydrophilicity of the charged group represents their most prominent aspect. Thus water solubility of host can be retained although very hydrophobic moieties have to be incorporated into its structure in order to effect substrate binding. The range of water soluble host systems span from heterocyclophanes, azacrown ethers, macrocyclic cage compounds to dimeric steroids. Hydrolytic reactions of carboxylic- or phosphoryl derivatives, decarboxylations as well as nucleophilic aliphatic- and aromatic substitutions are the only reaction types known so far to be amenable to catalysis by polyammonium hosts. The rate enhancement factors in these truely catalytic reactions generally amount to 10–100 with a few cases reaching a factor of 1000 or more. Compared to the natural enzymes this still appears to be quite modest, but as simple as these nonproteinogenic molecular catalysts are they in fact mimic qualitatively many of the essential features of the biocatalysts successfully. Moreover they bear the potential of rational redesign in order to improve their catalytic properties. Thus it seems likely that the present first generation of polyammonium catalysts will evolve to more sophisticated systems including serveral binding- or catalytically active moieties. This synthetically demanding path to modular catalysts rather than the development of completely novel host structures appears to be the more promising approach to the enhancement of selectivity in chemical systems, which in turn is the underlying motivation to design artificial polyammonium molecular catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

H References

  1. Jencks, W. P.: Binding Energy, Specificity, and Enzymic Catalysis: The Circe Effect, in: Adv. Enzymol. (ed. Meister, A.) 43, 219 (1975)

    PubMed  Google Scholar 

  2. Lipscomb, W. N.: Acc. Chem. Res. 15, 232 (1982)

    Article  Google Scholar 

  3. Somogyi, B., Welch, G. R., Damjanovich, S.: Biochim. Biophys. Acta 768, 81 (1984)

    PubMed  Google Scholar 

  4. Stackhouse, J., Nambiar, K. P., Burbaum, J. J., Stauffer, D. M., Benner, S. A.: J. Am. Chem. Soc. 107, 2757 (1985)

    Article  Google Scholar 

  5. Dixon, M., Webb, E. C.: Enzymes, 3rd Ed.; p. 56, Longman, London 1979

    Google Scholar 

  6. Schulz, G. E., Schirmer, R. H.: Principles of Protein Structure, Springer Verlag, New York 1979

    Google Scholar 

  7. Breslow, R.: Science 218, 532 (1982)

    PubMed  Google Scholar 

  8. Breslow, R.: Acc. Chem. Res. 13, 170 (1980)

    Article  Google Scholar 

  9. Bender, M. L., Bergeron, R. J., Komiyama, M.: The Bioorganic Chemistry of Enzymatic Catalysis, Chapter 1, John Wiley, New York 1984

    Google Scholar 

  10. Borsook, H., Schott, H. F.: J. Biol. Chem. 92, 535 (1931)

    Google Scholar 

  11. Ise, N., Okubo, T., Kunugi, S.: Acc. Chem. Res. 15, 171 (1982)

    Article  Google Scholar 

  12. Fendler, J. H.: Pure Appl. Chem. 54, 1809 (1982)

    Google Scholar 

  13. Bunton, C. A.: Reactions in micelles and similar self-organized aggregates, in: The Chemistry of Enzyme Action (ed. Page, M. I.) p. 461, Elsevier, Amsterdam 1984

    Google Scholar 

  14. Hopkins, A., Williams, A.: J. Chem. Soc. Perkin Trans. II, 1983, 891

    Google Scholar 

  15. Murakami, Y., Nakano, A., Yoshimatsu, A., Uchitomi, K., Matsuda, Y.: J. Am. Chem. Soc. 106, 3613 (1984)

    Article  Google Scholar 

  16. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd Ed., Wiley, New York 1980

    Google Scholar 

  17. Komiyama, M., Bender, M. L.: Cyclodextrins as enzyme models, in: The Chemistry of Enzyme Action (ed. Page, M. I.) p. 505, Elsevier, Amsterdam 1984

    Google Scholar 

  18. Knowles, J. R., Boger, J.: J. Am. Chem. Soc. 101, 7631 (1979)

    Article  Google Scholar 

  19. Odashima, K., Koga, K., Itai, A., Iitaka, Y.: ibid. 102, 2504 (1980)

    Article  Google Scholar 

  20. Diedrich, F., Griebel, D.: ibid. 106, 8024 (1984); ibid. 106, 8037 (1984)

    Article  Google Scholar 

  21. Dietrich, B., Fyles, D. L., Fyles, T. M., Lehn, J.-M.: Helv. Chim. Acta 62, 2763 (1979)

    Article  Google Scholar 

  22. Dietrich, B., Hosseini, M. W., Lehn, J.-M., Session, R. B.: ibid. 66, 1262 (1983)

    Article  Google Scholar 

  23. Jencks, W. P.: Catalysis in Chemistry and Enzymology, Chapter 2, 3, McGraw-Hill, New York 1969

    Google Scholar 

  24. Snell, E. E., DiMari, S. J.: Schiff base intermediates in enzyme catalysis, in: The Enzymes, Vol. II (ed. Boyer, P.) 3rd Ed., p. 335, Academic Press, New York 1970

    Google Scholar 

  25. Tabushi, I., Kimura, Y., Yamamura, K.: J. Am. Chem. Soc. 100, 1304 (1978)

    Article  Google Scholar 

  26. Tabushi, I., Kimura, Y., Yamamura, K.: ibid. 103, 6486 (1981)

    Article  Google Scholar 

  27. Fersht, A. R.: Pure Appl. Chem. 54 1819 (1982)

    Google Scholar 

  28. Fersht, A. R.: Enzyme Structure and Mechanism, p. 95, 261, Freeman, San Francisco 1977

    Google Scholar 

  29. Knowles, J. R., Albery, W. J.: Acc. Chem. Res. 10, 105 (1977)

    Article  Google Scholar 

  30. Rosenberry, T. L.: Adv. Enzymol. 43, 103 (1975)

    PubMed  Google Scholar 

  31. Stoops, J. K., Horgan, D. J., Runnegar, M. T. C., de Jersey, J., Webb, E. C., Zerner, B.: Biochemistry 8, 2026 (1969)

    Article  PubMed  Google Scholar 

  32. Schneider, H. J., Busch, R.: Angew. Chem. 96, 910 (1984); Angew. Chem. Int. Ed. Engl. 23, 911 (1984)

    Google Scholar 

  33. Tabushi, I., Yamamura, K., Fujita, K., Kawakubo, H.: J. Am. Chem. Soc. 101, 1019 (1979)

    Article  Google Scholar 

  34. Tabushi, I.: New insights into the host-guest solvent interaction of some inclusion complexes. Reaction path control in cyclodextrin inclusion as a lyase model: Solvolysis of β-bomethylnaphthalene, in Advances in Solution Chemistry, (ed. Betini, I., Lunazzi, L., Dei, A.) p. 221, Plenum, New York 1981

    Google Scholar 

  35. Mock, W. L., Irra, T. A., Wepsiec, J. P., Manimaran, T. L.: J. Org. Chem. 48, 3619 (1983)

    Article  Google Scholar 

  36. Vögtle, F., Franke, J.: Angew. Chem. 97, 224 (1985); Angew. Chem. Int. Ed. Engl. 24, 219 (1985)

    Google Scholar 

  37. Tabushi, K., Kimura, Y., Yamamura, K.: Facilitated formation of tetrahedral intermediate in esterase action by a water soluble heterocyclophane in: Chemical Approaches to Understanding Enzyme Catalysis, (ed. Green B. S., Ashani, Y., Chipman, D.) p. 328, Elsevier, Amsterdam 1982

    Google Scholar 

  38. Kirby, G. W., Ogunkoya, L.: J. Chem. Soc. 1965, 6914

    Google Scholar 

  39. Vögtle, F., Müller, W. M.: Angew. Chem. 96, 711 (1984); Angew. Chem. Int. Ed. Engl. 23, 712 (1984)

    Google Scholar 

  40. Murakami, Y., Nakano, A., Akiyoshi, K., Fukuya, K.: J. Chem. Soc. Perkin Trans. I, 1981, 2800

    Google Scholar 

  41. Murakami, Y.: Top. Curr. Chem. 115, 107 (1983)

    Google Scholar 

  42. Hol, W. G. J., van Duijnen, P. T., Berendsen, H. J. C.: Nature 273, 443 (1978)

    Article  PubMed  Google Scholar 

  43. Cotton, F. A., LaCour, T., Hazen, E. E. Jr., Legg, M. L.: Biochim. Biophys. Acta 481, 1 (1977)

    PubMed  Google Scholar 

  44. Osherhoff, N., Brautigan, D. L., Margoliash, E.: Proc. Nat. Acad. Sci. USA, 77, 4439 (1980)

    PubMed  Google Scholar 

  45. Anderson, D. G., Hammes, G. G., Walz, F. G.: Biochemistry 7, 1637 (1968)

    Article  PubMed  Google Scholar 

  46. Pierre, J.-L., Baret, P.: Bull. Soc. Chim. France 1983, II, 367

    Google Scholar 

  47. Stern, K. H., Amis, E. S.: Chem. Rev. 59, 1 (1959)

    Article  Google Scholar 

  48. Lehn, J.-M., Graf, E.: J. Am. Chem. Soc. 97, 5022 (1975)

    Article  Google Scholar 

  49. Graf, E., Lehn, J.-M.: Helv. Chim. Acta 64, 1040 (1981)

    Article  Google Scholar 

  50. Schmidtchen, F. P.: Chem. Ber. 113, 864 (1980)

    Google Scholar 

  51. Schmidtchen, F. P.: Angew. Chem. 89, 751 (1977); Angew. Chem. Int. Ed. Engl. 16, 720 (1977)

    Google Scholar 

  52. Schmidtchen, F. P., Müller, G.: J. Chem. Soc. Chem. Commun. 1984, 1115

    Google Scholar 

  53. Schmidtchen, F. P.: Chem. Ber. 114, 597 (1981)

    Google Scholar 

  54. Rohrbach, R. P., Rodriguez, L. J., Eyring, E. M., Wojcik, J. F.: J. Phys. Chem. 81, 944 (1977)

    Article  Google Scholar 

  55. Conway, B. E.: Thermodynamic and transport behavior of electrolytes, in: Physical Chemistry (ed. Eyring, H., Henderson, D., Jost, W.) p. 63, Academic Press, New York 1970

    Google Scholar 

  56. Parker, A. J.: Chem. Rev. 69, 1 (1969)

    Article  Google Scholar 

  57. Barrett, A. G. M., Lana, J. C. A., Tograie, S.: J. Chem. Soc. Chem. Commun. 1980, 300

    Google Scholar 

  58. Schmidtchen, F. P.: Macrotricyclic ammonium salts: enzyme like activity, in: Chemical Approaches to Understanding Enzyme Catalysis, (ed. Green, B. S., Ashani, Y., Chipman, D.) p. 315, Elsevier, Amsterdam 1982

    Google Scholar 

  59. Illuminati, G., Mandolini, L., Masci, B.: J. Am. Chem. Soc. 97, 4960 (1975)

    Article  Google Scholar 

  60. Grovenstein, E., Lee, D. E.: ibid. 75, 2639 (1953)

    Article  Google Scholar 

  61. Cristol, S. J., Norris, W. P.: ibid. 75, 2645 (1953)

    Article  Google Scholar 

  62. Schmidtchen, F. P.: Angew. Chem. 93, 469 (1981); Angew. Chem. Int. Ed. Engl. 20, 466 (1981)

    Google Scholar 

  63. Schmidtchen, F. P.: J. Chem. Soc. Perkin Trans. II, in the press

    Google Scholar 

  64. Kemp, D. S., Paul, K. G.: J. Am. Chem. Soc. 97, 7305 (1975); ibid. 97, 7312 (1975)

    Article  Google Scholar 

  65. Page, M. I.: Angew. Chem. 89, 456 (1977); Angew. Chem. Int. Engl. 16, 449 (1977)

    Google Scholar 

  66. Schmidtchen, F. P.: Chem. Ber. 117, 725 (1984)

    Google Scholar 

  67. Straub, T. S., Bender, M. L.: J. Am. Chem. Soc. 94, 8875 (1972)

    Article  Google Scholar 

  68. cf. Bunton, C. A., Moffatt, J. R., Rodenas, E.: ibid. 104, 2653 (1982)

    Article  Google Scholar 

  69. Schmidtchen, F. P.: Chem. Ber. 117, 1287 (1984)

    Google Scholar 

  70. Broxton, T. J., Muir, D. M., Parker, A. J.: J. Org. Chem. 40, 3230 (1975)

    Article  Google Scholar 

  71. Broxton, T. J.: Aust. J. Chem. 34, 2313 (1981)

    Google Scholar 

  72. Gokel, G. W., Dishong, D. M., Schultz, R. A., Gatto, V. J.: Synthesis, 1982, 997

    Google Scholar 

  73. Kaden, Th. A.: Top. Curr. Chem. 121, 157 (1984)

    Google Scholar 

  74. Hosseini, M. W., Lehn, J.-M., Mertes, M. P.: Helv. Chim. Acta 66, 2454 (1983)

    Article  Google Scholar 

  75. Kimura, E., Kodama, M., Yatsunami, T.: J. Am. Chem. Soc. 104, 3182 (1982)

    Article  Google Scholar 

  76. Guthrie, J. P., Cullimore, P. A., McDonald, R. S., O'Leary, S.: Can. J. Chem. 60, 747 (1982)

    Google Scholar 

  77. Komiyama, M., Bender, M. L.: J. Am. Chem. Soc. 99, 8021 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Vögtle E. Weber

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Schmidtchen, F.P. (1986). Molecular catalysis by polyammonium receptors. In: Vögtle, F., Weber, E. (eds) Biomimetic and Bioorganic Chemistry II. Topics in Current Chemistry, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0018065

Download citation

  • DOI: https://doi.org/10.1007/BFb0018065

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16023-6

  • Online ISBN: 978-3-540-39704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics