Skip to main content

Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens

  • Clay Mineralogy And Applied Geology
  • Conference paper
  • First Online:
Thermal Analysis in the Geosciences

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 38))

Abstract

The characterization of illite clay minerals by the use of the technique of differential thermal analysis (DTA), thermogravimetry (TG) and derivative thermogravimetry (DTG) is presented. This presentation is offered not only as a review of the thermal characteristics of this important group of clay materials but suggestions relative to the application of the thermal analysis techniques to contaminated illitic specimens; i.e., mineral mixtures, are included. Two commonly referenced illitic clay specimens, which have been widely distributed, were studied here. These were the American Petroleum Institute Reference Clay Specimen from Fithian, Illinois (API #35) and the Clay Mineral Society's Source Clay Specimen from Silver Hill, Montana (CMS-IMt).

These clay specimens were studied using a modern computerized differential thermal analyzer which also contained a “DSC” mode of operation for peak energy assignment. Representative DTA thermal curves using both DTA and computerized DSC modes are given for both clay specimens. The effect of the variation of heating rate and sample size on the observed peak temperatures and resolution is demonstrated for both illite specimens.

This study also demonstrates the use of carbon dioxide purge atmospheres for both shifting and enhancing the DTA peak signal observed for small carbonate contaminants in such clay materials. Finally, the actual inorganic carbon content of the Fithian (API #35) specimen is determined by acid decarboxylation of the carbonate component and subsequent measurement of the carbon dioxide which is evolved using a commercial element analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Earnest C. M. (1981) — Thermal Analysis of Mineral Matter in Coals and Coal Ash.— Pittsburgh Conf. Paper #493, Atlantic City, NJ.

    Google Scholar 

  • Earnest C. M. (1983a) — Thermal analysis of hectorite. Part I. Thermogravimetry.— Thermochim. Acta, 63, 277–289

    Article  Google Scholar 

  • Earnest C. M. (1983b) — Thermal analysis of hectorite. Part II. Differential thermal analysis.— Thermochim. Acta, 63, 291–306

    Article  Google Scholar 

  • Earnest C. M. (1983) — in Advances in Materials Characterization.— Mat. Sci. Res. Series, Vol. 15 (Rossington D. R. & Snyder R. L. (eds.)), Plenum Press, New York, p. 515

    Google Scholar 

  • Earnest C. M. (1984) — Thermal Analysis of Clays, Minerals and Coal.— Perkin Elmer Corporation, Norwalk, CT.

    Google Scholar 

  • Grim R. E. (1947) — Differential thermal curves of prepared mixtures of clay minerals.— Am. Mineral., 32, 493–501

    Google Scholar 

  • Grim R. E. (1948a) — The illite clays.— Vol. Titels and Abstracts — Internat. Geological Congress, London, 127–128

    Google Scholar 

  • Grim R. E. (1948b) — Rehydration and dehydration of clay minerals.— Am. Mineral., 33, 50–59

    Google Scholar 

  • Grim R. E. (1968) — Clay Mineralogy.— Second Edition, McGraw Hill, York.

    Google Scholar 

  • Grim R. E. & Bradley W. F. (1940) — Effect of heat on illite and montmorillonite.— J. Am. Ceram. Soc., 23, 242–248

    Google Scholar 

  • Grim R. E., Bray R. H. & Bradley W. F. (1937) — Mica in argillaceous sediments.— Am. Mineral., 22, 813–829

    Google Scholar 

  • Grim R. E. & Rowland R. A. (1942a) — Differential thermal analysis of clay minerals and other hydrous materials. Part I.— Am. Mineral., 27, 756–761

    Google Scholar 

  • Grim R. E. & Rowland R. A. (1942b) — Differential thermal analysis of clay minerals and other hydrous materials. Part II.— Am. Mineral., 27, 801–808

    Google Scholar 

  • Kerr P. F., Kulp J. L. & Hamilton P. K. (1949) — Differential Thermal Analysis of Reference Clay Specimens.— API Project #49, Columbia University, New York, p. 40

    Google Scholar 

  • Mackenzie R. C. (1957) — The Differential Thermal Investigation of Clays.— Mineralogical Society, London.

    Google Scholar 

  • Mackenzie R. C. (1970) — Differential Thermal Analysis.— Vol. 1. Academic Press, London, p. 539

    Google Scholar 

  • Newman A. C. D. (ed.) (1987) — Chemistry of Clays and Clay Minerals.— Wiley-Interscience, New York, 69

    Google Scholar 

  • Rowland R. A. & Lewis D. R. (1951) — Furnace atmosphere control in differential thermo analysis.— Am. Mineral., 36, 80

    Google Scholar 

  • Smykatz-Kloss W. (1974) — Differential Thermal Analysis: Application and Results in Mineralogy.— Springer-Verlag, Berlin.

    Google Scholar 

  • Speil S., Berkelhamer L. H., Pask J. & Davies B. (1945) — Differential thermal analysis of clays and aluminous minerals.— U.S. Bureau of Mines Tech. Paper #664

    Google Scholar 

  • Van Olphen H. & Fripiat J. J. (eds.) (1979) — DATA Handbook for Clay Minerals and Other Non-Metallic Minerals.— Pergamon Press, Oxford.

    Google Scholar 

  • Warne S. St. J. (1975) — An improved differential thermal analysis method for the identification and evaluation of calcite, dolomite and ankerite in coal.— J. Inst. Fuel, 48, 142–145

    Google Scholar 

  • Warne S. St. J. (1978) — Proben-Abhängigkeit (PA) curves of simple anhydrous carbonate minerals.— J. Thermal Anal., 14, 325–330

    Article  Google Scholar 

  • Warne S. St. J. (1979) — Identification of magnesite form pyrite in coal by DTA.— J. Inst. Energy, 52, 21–22

    Google Scholar 

  • Warne S. St. J. (1986) — Application of variable atmosphere DTA (in CO2) to improved detection and content evaluation of anhydrous carbonates in mixtures.— Thermochim. Acta, 109, 243–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Werner Smykatz-Kloss Slade St. J. Warne

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Earnest, C.M. (1991). Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens. In: Smykatz-Kloss, W., Warne, S.S.J. (eds) Thermal Analysis in the Geosciences. Lecture Notes in Earth Sciences, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010271

Download citation

  • DOI: https://doi.org/10.1007/BFb0010271

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54520-0

  • Online ISBN: 978-3-540-38430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics