Skip to main content

The error model of inertial geodesy a study in dynamic system analysis

  • Part B
  • Conference paper
  • First Online:
Mathematical and Numerical Techniques in Physical Geodesy

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 7))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bierman, G.F., Factorization methods for discrete sequential estimation. Academic Press, New York, 1977.

    Google Scholar 

  • Bose, S. and H. Baussus von Luetzow, Improved determinations of deflections of the vertical from astrogeodetic-inertial measurements. Proc. Third Int. Symp. on Inertial Technology for Surveying and Geodesy, UCSE Publ. No 60005, Calgary, 1986.

    Google Scholar 

  • Braun, M., Differential equations and their aplications. Springer Verlag, New York, 1983.

    Google Scholar 

  • Britting, K.R., Inertial navigation systems analysis, Interscience, New York, 1971.

    Google Scholar 

  • Brown, R.G., Introduction to random signal analysis and Kalman filtering. John Wiley and Sons, New York, 1983.

    Google Scholar 

  • Bryson, A.E. and Y.C. Ho, Applied optimal control. Blaisdell Publishing Co., Waltham, Mass., 1969.

    Google Scholar 

  • Casti, J.L., Dynamical systems and their applications: Linear theory. Academic Press, New York, 1977.

    Google Scholar 

  • Casti, J.L., Nonlinear system theory, Academic Press Inc., Orlando, 1985.

    Google Scholar 

  • Farrell, J.L., Integrated Aircraft Navigation. Academic Press, New York, 1976.

    Google Scholar 

  • Faurre, P., Navigation inertielle optimale et filtrage statistique. Dunod, Paris, 1971.

    Google Scholar 

  • Fawzy, I. and R.E.D. Bishop, On the dynamics of linear nonconservative systems. Proc. Royal Society, London, A 352, 25–40, 1976.

    Google Scholar 

  • Fraser, D.C. and J.E. Potter, The optimum linear smoother as a combination of two optimum linear filters. IEEE Trans. on Autom. Control, AC-14, 4, 387–390, 1969.

    Google Scholar 

  • Fischer, K. and W. Stephan, Schwingungen. Birkhäuser Verlag, Basel 1981.

    Google Scholar 

  • Forsberg, R., A. Vassiliou, K.P. Schwarz and R.V.C. Wong, Intertial gravimetry — a comparison of Kalman filtering and post-mission adjustment techniques. Proc. Third Int. Symp. on Inertial Technology for Surveying and Geodesy, UCSE Publ. No 60005, Calgary, 1986.

    Google Scholar 

  • Gelb, A., Applied optimal estimation. The M.I.T. Press, Cambridge, Mass., 1974. Fourth printing 1978.

    Google Scholar 

  • Hein, G.W., The local gravity field in the concept of integrated geodesy. Proc. Beijing Int. Summer School on Local Gravity Field Approximation. UCSE Publ. No 60003, Calgary, 1984.

    Google Scholar 

  • Hochstadt, H., Differential equations. Dover, New York, 1975.

    Google Scholar 

  • Jazwinski, A.H., Stochastic processes and filtering theory. Academic Press, New York, 1960.

    Google Scholar 

  • Kalman, R.E., A new approach to linear filtering and prediction problems. Journal of Basic Engineering. Transactions of the ASME, 82 D, 35–45, 1960.

    Google Scholar 

  • Kalman, R.E., A retrospective after twenty years: From the pure to the applied. Proc. AGU Chapman Conf. on Applications of Kalman Filter to Hydrology, Hydraulics, and Water Resources, Pittsburgh, 1978.

    Google Scholar 

  • Magnus, K., Schwingungen. Teubner Studienbücher, Stuttgart, 1976.

    Google Scholar 

  • McCullum, P.A. and B.F. Brown, Laplace Transform Tables and Theorems. Holt, Rinehart and Winston, New York, 1965.

    Google Scholar 

  • Möhlenbrink, W., Nonlinearities in the dynamic model of inertial sensors. Proc. Third Int. Symp. on Inertial Technology for Surveying and Geodesy, UCSE Publ. No 60005, Calgary, 1986.

    Google Scholar 

  • Natke, H.G., Einführung in die Theorie und Praxis der Zeitreihen und Modalanalyse. Friedr. Vieweg & Sohn, Braunschweig, 1983.

    Google Scholar 

  • Rauch, H.E., F. Tung and C.T. Striebel, Maximum likelihood estimates of linear dynamic systems. AIAA J., 3, 8, 1445–1450, 1965.

    Google Scholar 

  • Santilli, R.M., Foundations of theoretical mechanics I. Springer Verlag, New York, 1978.

    Google Scholar 

  • Schuler, M., Die Störung von Pendel-und Kreiselapparaten durch die Beschleunigung des Fahrzeugs. Physikalische Zeitschrift, 24, 344–350, 1923.

    Google Scholar 

  • Schwarz, K.P., Error propagation in inertial positioning. The Canadian Surveyor, 34, 3, 265–276, 1980.

    Google Scholar 

  • Schwarz, K.P., Kalman filtering and optimal smoothing. In Papers for the CIS Adjustment and Analysis Seminars, Ottawa, 1983a.

    Google Scholar 

  • Schwarz, K.P., Inertial surveying and geodesy. Rev. Geoph. and Space Phys., 21, 4, 878–890, 1983b.

    Google Scholar 

  • Schwarz, K.P., Inertial adjustment models — A study of some underlying assumptions. In Geodesy in Transition, Publication 60002, Division of Surveying Engineering, The University of Calgary, 1983c.

    Google Scholar 

  • Schwarz, K.P., A unified approach to post-mission processing of inertial data. Bulletin Géodésique, 59, 1, 33–54, 1985.

    Google Scholar 

  • Schwarz, K.P., Geoid profiles from an integration of GPS satellite and inertial data. Paper presented at the Int. Symp. on the Definition of the Geoid, Florence, May, 26–30, 1986.

    Google Scholar 

  • Schwarz, K.P. and A.A. Vassiliou, An eigenvector base for the error model in inertial surveying. Proc. Third Int. Symp. on Inertial Technology for Surveying and Geodesy, UCSE Publ. No 60005, Calgary, 1986.

    Google Scholar 

  • Vassiliou, A.A., Processing of unfiltered data from an inertial survey system of local level type. Manuscripta Geodaetica, 9, 4, 231–306, 1984.

    Google Scholar 

  • Vassiliou, A.A. and K.P. Schwarz, Eigenvalues of the dynamics matrix used in inertial geodesy. Manuscripta Geodaetica, 10, 3, 213–221, 1985.

    Google Scholar 

  • Wei, S.Y. and A. J. Brockstein, Offline optimal adjustment of inertial system survey data. Proc. Fall Conv. ACSM-ASP, Salt Lake City, Utah, Sept. 1983.

    Google Scholar 

  • Wong, R.V.C., A Kalman filter-smoother for an inertial survey system of local level type. Publ. 20001, Div. Surv. Eng., The Univ. of Calgary, 1982.

    Google Scholar 

  • Wong, R.V.C. and S.C. McMillan, Precise aircraft positioning with an integrated inertial navigation system. Proc. Third Int. Symp. on Inertial Technology for Surveying and Geodesy, UCSE Publ. No 60005, Calgary, 1986.

    Google Scholar 

  • Wong, R.V.C. and K.P. Schwarz, Dynamic positioning with an integrated GPS-INS: Formulae and base line tests. UCSE Publ. No 30003, Calgary, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans Sünkel

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Schwarz, KP. (1986). The error model of inertial geodesy a study in dynamic system analysis. In: Sünkel, H. (eds) Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010138

Download citation

  • DOI: https://doi.org/10.1007/BFb0010138

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16809-6

  • Online ISBN: 978-3-540-47059-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics