Skip to main content

Biological nitrogen removal from wastewater

  • Chapter
  • First Online:
Biotechnics/Wastewater

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 51))

Abstract

A review of the research on the kinetics of nitrification and denitrification is presented including an explanation of reaction engineering models. The results of laboratory scale experiments with high rate nitrification processes are discussed using kinetic results for oxygen limitation as well as for substrate limitation and inhibition. It can be demonstrated that reaction engineering models are helpful for a better understanding of the processes and for the design of reactors. Pilot scale investigations from the last 15 years show remarkable advances in the increase in nitrification efficiency and in the stabilization of the process. The time is ripe for nitrogen removal from industrial effluents in full scale processes!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c:

concentration

cB :

bacteria concentration as odm (organic dry matter) M/L3

c′:

concentration of dissolved oxygen M/L3

kD :

decay coefficient 1/T

ke :

endogenous respiration coefficient 1/T

K′:

oxygen saturation coefficient M/L3

KSH :

saturation coefficient for the unionized substrate M/L3

KiH :

inhibition coefficient for the unionized substrate M/L3

Ks :

saturation coefficient for the ionized substrate M/L3

Ki :

inhibition coefficient for the ionized substrate M/L3

Ka, Kb :

equilibrium constants for dissociation of the substrate M/L3

nR :

recycle ratio

nE :

thickening ratio

r:

reaction rate M/L3T

r′:

oxygen utilization rate M/L3T

r′* :

real maximal oxygen utilization rate M/L3T

rBW :

growth rate M/L3T

rBd :

decay rate M/L3T

\(r_{o_2 s}\) :

oxygen utilization rate for substrate removal (e.g. ammonia) M/L3T

\(r_{o_2 e}\) :

oxygen utilization rate for endogenous respiration M/L3T

S:

Monod or Haldane term (Eq. 42)

T:

temperature ‡C

t:

time T

tv :

(hydraulic) mean residence time T

tvB :

sludge age (mean residence time of bacteria) T

Μ:

specific growth rate 1/T

Μmax :

maximal specific growth rate 1/T

Μ *max :

real maximal specific growth rate 1/T

o:

influent

a:

effluent, reactor

M:

mixing point

R:

recycle flow

ü:

surplus sludge

k:

critical

max:

maximal

References

  1. Cousins WG, Mindler AB (1972) J WPCF 44: 607

    Google Scholar 

  2. Koziorowski B, Kucharski J (1972) Industrial waste disposal. Pergamon, Oxford

    Google Scholar 

  3. Adams CE, Eckenfelder WW (1977) J WPCF 49: 413

    Google Scholar 

  4. Garrison WE, Kremer JG, Murk J (1973) Proc 28th Ann Purdue Ind Waste Conf 309–322

    Google Scholar 

  5. Pascik I, Mann T (1984) Water Sci Tech Vol 16, Vienna, 215–223

    Google Scholar 

  6. Hutton WC, La Rocca Sa (1975) J WPCF 47, 989–997

    Google Scholar 

  7. Arnold DW, Wolfram WE (1975) Proc 30th Ann Purdue Ind Waste Conf 760-767

    Google Scholar 

  8. Meinck F, Stoof H, Kohlschütter H (1968) IndustrieabwÄsser; Fischer, Stuttgart

    Google Scholar 

  9. ATV (eds) (1985) Lehr-und Handbuch der Abwassertechnik, 3 Aufl, Bd V: Organisch verschmutzte AbwÄsser der Lebensmittelindustrie. Ernst, Berlin

    Google Scholar 

  10. Braun R (1982) Biogas-MethangÄrung organischer Abfallstoffe — Grundlagen und Anwendungsbeispiele. Springer, Wien

    Google Scholar 

  11. Neumann H, Viehl K (1966) Gwf wasser/abwasser 107, 1151–1154

    Google Scholar 

  12. Zall RR (1972) J Milk Food Technol 35, 53–55

    Google Scholar 

  13. Basu AK (1975) J WPCF 2184–2190

    Google Scholar 

  14. Patterson JW, Minear Ra (1975) State-of-the-Art for Inorganic Chemicals Industry: Commerical Explosives; US EPA 6002-74-009-b

    Google Scholar 

  15. US EPA (Hrsg. 1975) Development Document for Effluent Limitation Guidelines and New Source Performance Standards for the Pressed and Blown Glass Segment of the Glass Manufacturing Point Source Category; US EPA 440/1-75/034-a

    Google Scholar 

  16. Brown GE (1975) Land Application of High Nitrogenous Industrial Wastewater; Proc of the National Conf on Management and Disposal of Residues from the Treatment of Ind Wastewaters, Washington DC

    Google Scholar 

  17. Dombrowski T (1991) Kinetik der Nitrifikation und Reaktionstechnik der Stickstoffeliminierung aus hochbelasteten AbwÄssern; VDI-Fortschrittsberichte, Reihe 15: Umwelttechnik Nr 87

    Google Scholar 

  18. Patterson JW (ed) (1985) Nitrite and Nitrate Nitrogen, in Industrial Wastewater Treatment Technology. Butterworth, Boston

    Google Scholar 

  19. Francis CW, Mankin JB (1977) Water Research 11: 289

    Google Scholar 

  20. Jewell WJ, Cummings RJ (1975) J of WPCF 47: 2281

    Google Scholar 

  21. Bode H (1985) Beitrag zur Anaerob-aerob-Behandlung von IndustrieabwÄssern; Veröff des Inst f Siedlungswasser-wirtschaft der UniversitÄt Hannover, Heft 64

    Google Scholar 

  22. Lompe D (1992) Kinetik und Reaktionstechnik der biologischen Denitrifikation; Dissertation, TU Berlin

    Google Scholar 

  23. Frame Wastewater Regulation, Allgemeine Rahmen-Verwaltungs-vorschrift über Mindestanforderungen an das Einleiten von Abwasser in GewÄsser (Rahmen-Abwasser VwV), Anhang 1 “Gemeinden”, vom 8. Sept 1989

    Google Scholar 

  24. Lohaus J (1990) Korrespondenz Abwasser 37, 660–667

    Google Scholar 

  25. Loveless Je, Painter Ha (1968) J gen Microbiol 52, 1–14

    Google Scholar 

  26. Haug RT, McCyrty PL (1972) J WPCF 44, 2086–2102

    Google Scholar 

  27. Sharma B, Ahlert RC (1977) Water Research 11, 897–925

    Google Scholar 

  28. Haldane JBS (1965) Enzymes; Longmans Green London (1930) and MIT Press Cambridge, Mass

    Google Scholar 

  29. Knowles G, Downing AL, Barret MJ (1965) J gen Microbiol 38, 263–278

    Google Scholar 

  30. Jenkins SH (1969) Nitrification, Water Poll Control, 610–618

    Google Scholar 

  31. Gray NF (1989) Biology of Wastewater Treatment; Oxford Science Publishers, Oxford

    Google Scholar 

  32. Stankewich MJ jr (1972) Proc 27th Ann Purdue Ind Waste Conf 1–23

    Google Scholar 

  33. Wiesmann U (1966) Chem-Ing-tech 58, 464–474

    Google Scholar 

  34. Wiesmann U (1989) Wasserkalender, Erich-Schmidt, Berlin, p 117

    Google Scholar 

  35. Lompe D, Wiesmann U (1991) Chem-Ing-Tech 63, 692–699

    Google Scholar 

  36. Anthonisen AC, Loehr RC (1976) J WPCF, 835–852

    Google Scholar 

  37. Bergeron P (1978) Karlsruher Berichte zur Ingenieurbiologie, H 12

    Google Scholar 

  38. Nyhuis G (1985) Veröffentlichungen des Instituts für Siedlungswasserwirtschaft und Abfalltechnik der TU Hannover, Heft 61

    Google Scholar 

  39. Richardson M (1985) Royal Society of Chemistry, London

    Google Scholar 

  40. Bédard C, Knowles R (1989) Microbiol Rev 53, 68–84

    Google Scholar 

  41. La Motta E (1979) J Env Eng div, 655–673

    Google Scholar 

  42. Tanaka H, Dunn IJ (1982) Biotech and Bioeng 24, 669–689

    Google Scholar 

  43. Strand SE, McDonell AJ (1985) Water Research 19, 345–352

    Google Scholar 

  44. Larsen-Vefring W (1992) Simulation der Nitrifikation und anderer bakterieller Stoffwandlungen im Biofilm; Dissertation, TU Berlin

    Google Scholar 

  45. ATV-Regelwerk, Arbeitsblatt A 131, Feb 91: Bemessung von einstufigen Belebungsanlagen ab 5000 Einwohnerwerten

    Google Scholar 

  46. Williams SC, Harrington DW, Cooper PF (1986) Wat Pol Control 85, 81–89

    Google Scholar 

  47. Dalentoft E: Biological Treatment of a high strength nitrogen wastewater, Environ Biotechnology, Int Symp 22/25.04.1991, Ostende

    Google Scholar 

  48. Shade HJ (1977) Chem Eng Progr 73, 45–50

    Google Scholar 

  49. Ganczarczyk JJ (1979) Water Research 13, 337–342

    Google Scholar 

  50. Heijnen JJ (1989) Large Scale Anaerobic-aerobic Treatment of Complex Industrial Waste Water Using Immobilized Biomass in Fluidized Bed and Air-Lift Suspensions Reactors: GVC reprints Verfahrenstechnik der mechanischen, thermischen und biologischen Abwasserreinigung, Bd 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Wiesmann, U. (1994). Biological nitrogen removal from wastewater. In: Biotechnics/Wastewater. Advances in Biochemical Engineering/Biotechnology, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008736

Download citation

  • DOI: https://doi.org/10.1007/BFb0008736

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57319-7

  • Online ISBN: 978-3-540-48062-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics