Skip to main content

Stochastic realization problems

  • Chapter
  • First Online:
Three Decades of Mathematical System Theory

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 135))

Abstract

The stochastic realization problem asks for the existence and the classification of all stochastic systems for which the output process equals a given process in distribution or almost surely. This is a fundamental problem of system and control theory. The stochastic realization problem is of importance to modelling by stochastic systems in engineering, biology, economics etc. Several stochastic systems are mentioned for which the solution of the stochastic realization problem may be useful. As an example recent research on the stochastic realization problem for the Gaussian factor model and a Gaussian factor system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.L. Aggarwal (1974). Sur l'information de Fisher. Théories de l'Information, Lecture Notes in Mathematics 398, Springer-Verlag, Berlin, 111–117.

    Google Scholar 

  2. D.J. Aigner and M. Deistler (1989). Latent variables models — Editor's introduction. J. Econometrics 41, 1–3.

    Article  Google Scholar 

  3. H. Akaike (1976). Canonical correlation analysis of time series and the use of an information criterion. R. K. Mehra, D. G. Lainiotis (eds.), System identification — Advances and case studies, Academic Press, New York, 27–96.

    Google Scholar 

  4. B. D. O. Anderson (1985). Identification of scalar errors-in-variables models with dynamics. Automatica J.-IFAC 21, 709–716.

    Article  Google Scholar 

  5. B. D. O. Anderson and M. Deistler (1984). Identifiability in dynamic errors-in-variables models. J. Time Series Anal. 5, 1–13.

    Google Scholar 

  6. B. D. O. Anderson and M. Deistler (1987). Dynamic errors-in-variables systems with three variables. Automatica J.-IFAC 23, 611–616.

    Article  Google Scholar 

  7. T. W. Anderson and H. Rubin (1956). Statistical inference in factor analysis. J. Neyman (ed.). Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, Volume V, University of California Press, Berkeley, 111–150.

    Google Scholar 

  8. M. Aoki (1988). Nonstationarity, cointegration, and error correction in economic modeling. J. Econ. Dyn. Control 12, 199–201.

    Article  Google Scholar 

  9. M. Aoki (1988). On alternative state space representations of time series models. J. Econ. Dyn. Control 12, 595–607.

    Article  Google Scholar 

  10. V. I. Arkin and I. V. Evstigneev (1987). Stochastic models of control and economic dynamics, Academic Press, New York.

    Google Scholar 

  11. K. S. Arun, D. V. Bhaskar Rao, and S. Y. Kung (1983). A new predictive efficiency criterion for approximate stochastic realization. 1983 Conference on Decision and Control, IEEE, 1353–1355.

    Google Scholar 

  12. K. S. Arun and S. Y. Kung (1984). State space modeling and approximate realization methods for ARMA spectral estimation. IEEE International Conference on Systems, Man and Cybernetics, IEEE.

    Google Scholar 

  13. P. A. Bekker and J. De Leeuw (1987). The rank of reduced dispersion matrices. Psychometrika 52, 125–135.

    Google Scholar 

  14. A. Bensoussan and J. H. Van Schuppen (1985). Optimal control of partially observable stochastic systems with an exponential-of-integral performance index. SIAM J. Control Optim. 23, 599–613.

    Article  Google Scholar 

  15. D. Blackwell and L. Koopmans (1957). On the identificability problem for functions of finite Markov chains. Ann. Math. Statist. 28, 1011–1015.

    Google Scholar 

  16. M. Deistler (1986). Lincar errors-in-variables models. S. Bittanti (ed.). Time series and linear systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 37–67.

    Google Scholar 

  17. M. Deistler and B.D.O. Anderson (1988). Linear dynamic errors in variables models: Some structure theory. A. Bensoussan, J.L. Lions (eds.). Analysis and optimization of systems, Lecture Notes in Control and Information Sciences III, Springer-Verlag, Berlin, 873–883.

    Google Scholar 

  18. M. Deistler and B.D.O. Anderson (1989). Linear dynamic errors-in-variables models — Some structure theory. J. Econometrics 41, 39–63.

    Article  Google Scholar 

  19. B. De Moor (1988). Mathematical concepts and techniques for modelling of static and dynamic systems, Thesis, Katholicke Universitcit Leuven, Leuven.

    Google Scholar 

  20. J. P. Dufour (1983). Resultats generiques en analyse factorielle, Department de Mathématiques, U.S.T.L., Montpellier.

    Google Scholar 

  21. R. Engle and M. Watson (1981). A one-factor multivariate time series model of metropolitan wage rates. J. Amer. Statist. Assoc. 76, 774–781.

    Google Scholar 

  22. R. F. Engle and C. W. J. Granger (1987). Co-integration and error correction: Representation estimation, and testing. Econometrica 55, 251–276.

    Google Scholar 

  23. P. Faurre (1976). Stochastic realization algorithms. R. K. Mehra, D. G. Lainiotis (eds.). System Identification — Advances and Case Studies, Academic Press, New York, 1–25.

    Google Scholar 

  24. P. Faurre, M. Clerget, and F. Germain (1979). Opérateurs rationnels positifs, Dunod, Paris.

    Google Scholar 

  25. R. Frisch (1934). Statistical confluence analysis by means of complete regression systems, Publ. no. 5, University of Oslo Economic Institute, Oslo.

    Google Scholar 

  26. J.F. Geweke and K.J. Singleton (1981). Maximum likelihood ‘confirmatory’ factor analysis of econometric time series. Int. Economic Rev. 22, 37–54.

    Google Scholar 

  27. R. D. Gittens (1985). Canonical analysis-A review with applications in ecology, Springer-Verlag, Berlin.

    Google Scholar 

  28. K. Glover and E. Jonckheere (1986). A comparison of two Hankel-norm methods for approximating spectra. C.I. Byrnes, A. Lindquist (eds.). Modelling, Identification and Robust Control, Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 297–306.

    Google Scholar 

  29. A. Gombani and M. Pavon (1985). On the Hankel-norm approximation of linear stochastic systems. Systems & Control Lett. 5, 283–288.

    Google Scholar 

  30. A. Gombani and M. Pavon (1986). On approximate recursive prediction of stationary stochastic processes. Stochastics 17, 125–143.

    Google Scholar 

  31. A. Gombani, M. Pavon, and B. Coppo (1986). On Hankel-norm approximation of stationary increment processes. C.I. Byrnes, A. Lindquist (eds.). Modelling, Identification and Robust Control, Elsevier Science Publishers B.V., Amsterdam, 307–323.

    Google Scholar 

  32. C. W. J. Granger (1981). Some properties of time series data and their use in econometric model specification. J. Econometrics, 121–130.

    Google Scholar 

  33. M. Green and B. D. O. Anderson (1986). Identification of multivariable errors in variable models with dynamics. IEEE Trans. Automatic Control 31, 467–471.

    Article  Google Scholar 

  34. E. J. Hannan and M. Deistler (1988). The statistical theory of linear systems, John Wilcy & Sons, New York.

    Google Scholar 

  35. C. Heij (1988). Deterministic identification of dynamical systems, Thesis, University of Groningen, Groningen.

    Google Scholar 

  36. N. P. Jewell and P. Bloomfield (1983). Canonical correlations of past and future for time series: Definitions and theory. Ann. Statist. 11, 837–847.

    Google Scholar 

  37. N. P. Jewell, P. Bloomfield, and F. C. Bartmann (1983). Canonical correlations of past and future for time series: Bounds and computation. Ann. Statist. 11, 848–855.

    Google Scholar 

  38. E. A. Jonckheere and J. W. Helton (1985). Power spectrum reduction by optimal Hankel norm approximation of the phase of the outer spectral factor. IEEE Trans. Automatic Control 30, 1192–1201.

    Article  Google Scholar 

  39. R. E. Kalman (1982). System identification from noisy data. A.R. Bednarek, L. Cesari (eds.). Dynamical Systems II, Academic Press, New York, 135–164.

    Google Scholar 

  40. R. E. Kalman (1982). Identification from real data. M. Hazewinkel, A. H. G. Rinnooy Kan (eds.). Current developments in the interface: Economics, Econometrics, Mathematics, D. Reidel Publishing Company, Dordrecht, 161–196.

    Google Scholar 

  41. R. E. Kalman (1983). Identifiability and modeling in econometrics. P.R. Krishnaiah (ed.). Developments in Statistics 4, Academic Press, New York, 97–136.

    Google Scholar 

  42. R. E. Kalman, P.L. Falb, and M.A. Arbib (1969). Topics in mathematical system theory, McGraw-Hill Book Co., New York.

    Google Scholar 

  43. D. Kazakos and P. Papantoni-Kazakos (1980). Spectral distance measures between Gaussian processes. IEEE Trans. Automatic Control 25, 950–959.

    Article  Google Scholar 

  44. S. Y. Kung and K. S. Arun (1983). Approximate realization methods for ARMA spectral estimation. 1983 IEEE International Symposium on Circuits and Systems, IEEE, 105–109.

    Google Scholar 

  45. W. E. Larimore, S. Mahmoud, and R. K. Mehra (1984). Multivariate adaptive model algorithmic control. Proceedings 23rd Conference on Decision and Control, IEEE, 675–680.

    Google Scholar 

  46. W. E. Larrimore (1983). System identification, reduced-order filtering and modeling via canonical variate analysis. Proceedings 1983 American Control Conference, 445–451.

    Google Scholar 

  47. A. Lindquist and G. Picci (1985). Realization theory for multivariate stationary Gaussian processes. SIAM J. Control Optim. 23, 809–857.

    Article  Google Scholar 

  48. A. Lindquist, G. Picci, and G. Ruckebusch (1979). On minimal splitting subspaces and Markovian representations. Math. Systems Th. 12, 271–279.

    Article  Google Scholar 

  49. M. Pavon (1984). Canonical correlations of past inputs and future outputs for linear stochastic systems. Syst. Control Lett. 4, 209–215.

    Article  Google Scholar 

  50. A. Paz (1971). Introduction to probabilistic automata, Academic Press, New York.

    Google Scholar 

  51. V. V. Pellar and S. V. Khrushchev (1982). Hankel operators, best approximations, and stationary Gaussian processes. Russian Math. Surveys 37, 61–144.

    Google Scholar 

  52. G. Picci (1978). On the internal structure of finite-state stochastic processes. Proc. of a U.S.-Italy Seminar, Lecture Notes in Economics and Mathematical Systems 162, Springer-Verlag, Berlin, 288–304.

    Google Scholar 

  53. G. Picci (1989). Parametrization of factor analysis models. J. Econometrics 41, 17–38.

    Article  Google Scholar 

  54. G. Picci and S. Pinzoni (1986). Factor analysis models for stationary stochastic processes. A. Bensoussan, J. L. Lions (eds.). Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences 83, Springer-Verlag, Berlin, 412–424.

    Google Scholar 

  55. G. Picci and S. Pinzoni (1986). Dynamic factor-analysis models for stationary processes. IMA J. Math. Control and Info. 3, 185–210.

    Google Scholar 

  56. P. Purdue (1979). Stochastic compartmental models: A review of the mathematical theory with ecological applications. J.H. Matis, B.C. Patten, G.C. White (eds.). Compartmental analysis of ecosystem models, International Co-operative Publishing House, Fairland, MD, 223–260.

    Google Scholar 

  57. C. R. Rao (1964). The use and interpretation of principal component analysis in applied research. Sankhya, Series A 26, 329–358.

    Google Scholar 

  58. O. Reiersøl (1941). Confluence analysis by means of lag moments and other methods of confluence analysis. Econometrica 9, 1–24.

    Google Scholar 

  59. O. Reiersøl (1945). Confluence analysis by means of instrumental sets of variables. Arkiv für Mathematik, Astronomi och Fysik 32A.

    Google Scholar 

  60. J. Rissanen (1978). Modeling by shortest data description. Automatica J. IFAC 14, 465–471.

    Article  Google Scholar 

  61. J. Rissanen (1983). A universal prior for integers and estimation by minimum description length. Ann. Statist. 11, 416–431.

    Google Scholar 

  62. J. Rissanen (1985). Modeling by the minimum description lenghth principle-A survey, Preprint.

    Google Scholar 

  63. J. Rissanen (1986). Stochastic complexity and modeling. Ann. Statist. 14, 1080–1100.

    Google Scholar 

  64. J. Rissanen (1986). Predictive and nonpredictive minimum description length principles. S. Bittanti (ed.). Time series and linear systems, Lecture Notes in Control and Information Sciences 86, Springer-Verlag, Berlin, 115–140.

    Google Scholar 

  65. J. Ruckebusch (1978). Sur l'approximation rationnelle des filtres, Centre de Mathématiques Appliquees, Ecole Polytechnique, Palaiseau.

    Google Scholar 

  66. P.A. Samuelson (1979). A note on alternative regressions. J.E. Stiglitz (ed.). The collected scientific papers of Paul A. Samuelson, Fifth Printing, M.I.T. Press, Cambridge, 694–697.

    Google Scholar 

  67. C.A. Spearman (1904). General intelligence, objectively determined and measured. Amer. J. Psych. 15, 201–293.

    Google Scholar 

  68. P.J.C. Spreij (1986). Selfexciting counting process systems with finite state space, Report OS-R8613, Centre for Mathematics and Computer Science, Amsterdam.

    Google Scholar 

  69. P.J.C. Spreij (1987). Counting process systems-Identification and stochastic realization, Doctoral Thesis, University of Twente, Enschede.

    Google Scholar 

  70. J. H. Steiger (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels. Psychometrika 44, 157–167.

    Google Scholar 

  71. C. Van Putten and J.H. Van Schuppen (1983). The weak and strong Gaussian probabilistic realization problem. J. Multivariate Anal. 13, 118–137.

    Article  Google Scholar 

  72. J.H. Van Schuppen (1979). Stochastic filtering theory: A discussion of concepts, methods and results. M. Kohlmann, W. Vogel (eds.). Stochastic control theory and stochastic differential systems, Lecture Notes in Control and Information Sciences 16, Springer-Verlag, Berlin, 209–226.

    Google Scholar 

  73. J. H. Van Schuppen (1982). The strong finite stochastic realization problem-Preliminary results. A. Bensoussan, J.L. Lions (eds.). Analysis and optimization of systems, Lecture Notes in Control and Information Sciences 44, Springer-Verlag, Berlin, 179–190.

    Google Scholar 

  74. J.H. Van Schuppen (1986). Stochastic realization problems motivated by econometric modeling. C.I. Byrnes, A. Lindquist (eds.). Modelling, Identification and Robust Control, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, 259–275.

    Google Scholar 

  75. E. Verriest (1986). Projection Techniques for model reduction. C.I. Byrnes, A. Lindquist (eds.). Modelling, Identification and Robust Control, Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 381–396.

    Google Scholar 

  76. J.V. White (1983). Stochastic state-space models from empirical data. Proceedings 1983 Conference on Acoustics, Speechs and Signal Processing, IEEE, 243–246.

    Google Scholar 

  77. P. Whittle (1981). Risk-sensitive linear/quadratic/Gaussian control. Adv. Appl. Prob. 13, 764–777.

    Google Scholar 

  78. J.C. Willems (1986). From time series to linear systems-Part I. Finite dimensional linear time invariant systems. Automatica J. IFAC 22, 561–580.

    Article  Google Scholar 

  79. J.C. Willems (1987). From time series to linear systems-Part III. Approximate modelling. Automatica J. IFAC 23, 87–115.

    Article  Google Scholar 

  80. E. B. Wilson (1929). Review of ‘Crossroads in the mind of man: A study of differentiable mental abilities’ by T.L. Kelley. J. Gen. Psychology 2, 153–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hendrik Nijmeijer Johannes M. Schumacher

Additional information

This paper is dedicated to J. C. Willems on the occasion of his fiftieth birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this chapter

Cite this chapter

van Schuppen, J.H. (1989). Stochastic realization problems. In: Nijmeijer, H., Schumacher, J.M. (eds) Three Decades of Mathematical System Theory. Lecture Notes in Control and Information Sciences, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0008474

Download citation

  • DOI: https://doi.org/10.1007/BFb0008474

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51605-7

  • Online ISBN: 978-3-540-46709-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics