Skip to main content

Modeling and control for anaerobic wastewater treatment

  • Chapter
  • First Online:
Bioprocess Design and Control

Abstract

The recent literature on the modeling and control of anaerobic wastewater treatment processes is reviewed. An example from the author's personal work is used to describe how a dynamic simulation model can be developed from the basis of multi-organism growth kinetics and mass balancing techniques. This included consideration of the organic acid dissociation equilibria important for pH calculation and the thermodynamic influence of hydrogen on the reactions involving propionic and butyric acids. Liquid phase balances were linked to gas phase balances by gas-liquid transfer considerations. It is shown in detail how the model was applied to one and two stage experimental reactors for the design and tuning of controllers. Both conventional PID controllers and adaptive optimizing controllers, employing simple input-output models with an objective function, were tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A [m2]:

Reactor cross sectional area

ai, bi, c [−]:

Model parameter

C [mol m−3]:

Concentration of inorganic compound

C [C-mol m−3]:

Concentration of organic compound

EF [−]:

Equilibrium factor

F [m3 h−1]:

Liquid flow rate

G [mol h−1]:

Gas flow rate

ΔG0′ [kJ mol−1]:

Free Gibb's enthalpy

ΔG 0f [kJ mol−1]:

Standard free enthalpy of formation

Hi [mol m−3 bar−1]:

Henry-coefficient

KS [C-mol m−3]:

Saturation constant

KI [C-mol m−3]:

Inhibition constant

KA [mol m−3]:

Acid dissociation constant

KB [mol m−3]:

Base dissociation constant

KW [mol2 m−6]:

Water dissociation constant

Kr [*]:

Controller gain

kd [h−1]:

Death rate of organisms

kLa [h−1]:

Gas liquid phase mass transfer coefficient

N [mol m−3 h−1]:

Mass transfer rate

ni [mol]:

Amount of gas i in reactor gas phase

p [bar]:

Total pressure

PI [−]:

Performance index

R [bar m3/mol K]:

Universal gas constant

r [mol m−3 h−1]:

Reaction rate

rp [C-mol m−3 h−1]:

Product formation rate

rS [C-mol m−3 h−1]:

Substrate consumption rate

rX [C-mol m−3 h−1]:

Growth rate

T [K]:

Temperature

uB [m h−1]:

Bubble rising velocity

u [*]:

Manipulated process input

V [m3]:

Volume

X [C-mol m−3]:

Biomass concentration

Xi [−]:

Molar fraction of gas i in bubbles

YX/S [C-mol C-mol−1]:

Biomass yield from substrate S

YP/S [C-mol C-mol−1]:

Product yield from substrate S

y [*]:

Process output

α [*]:

Gain adaptive optimizer

β [*]:

Working point optimizer

δ [mol m−3]:

Different quantity in Eq. (14)

εg [−]:

Fractional gas hold up

λmin [*]:

Minimum forgetting factor optimizer

μ [h−1]:

Specific growth rate

μmax [h−1]:

Maximal specific growth rate

νi [−]:

Stoichiometric coefficient

Σ [*]:

Sensitivity optimizer

τsl [h]:

Solid retention time

[*]:

Units varying depending on application

AH:

acid

A :

dissociated AH

Ac:

acetic acid

An :

anion

B:

base

Bu:

butyric acid

D:

differential

g:

gas phase

HAc:

undissociated acetic acid

HBu:

undissociated butyric acid

HPr:

undissociated propionic acid

i:

refers to component

I:

integral

K+ :

cation

L:

liquid phase

P:

product

Pr:

propionic acid

S:

substrate

sl:

solid

titr:

titrator base

tot:

total

W:

water

X:

biomass

Z:

surplus cations

0:

reactor feed stream

COD:

Chemical oxygen demand

GC:

Gas chromatograph(y)

P:

Proportional

PI:

Proportional-integral

PID:

Proportional-integral-differential

VFA:

Volatile fatty acids

References

  1. Andrews JF (1978) The development of a dynamic model and control strategies for the anaerobic digestion process. In: Mathematical models in water pollution control. J Wiley, Chichester, p 281

    Google Scholar 

  2. Archer DB (1983) Enzyme Microb Technol 5: 570

    Google Scholar 

  3. Archer DB, Hilton MG, Adams P, Wiecko H (1986) Biotechnol Lett 8: 570

    Google Scholar 

  4. Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Nature Press, New York

    Google Scholar 

  5. Barnes D, Fitzgerald PA (1987) Anaerobic wastewater treatment processes. In: Forster CF, Wase DAJ (eds) Environmental biotechnology. Ellis Horwood, Chichester, p 57

    Google Scholar 

  6. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam

    Google Scholar 

  7. Bellgardt KH (1991) personal communication

    Google Scholar 

  8. Bryers JD (1985) Biotechnol Bioeng 27: 638

    Google Scholar 

  9. Colberg PJ (1988) Anaerobic microbial degradation of cellulose, lignin, oligoligninols, and monoaromatic lignin derivatives. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, p 333

    Google Scholar 

  10. Collins AS, Gilliland BE (1974) J Environ Eng Div 100: 487

    Google Scholar 

  11. Conrad R, Schink B, Phelps TJ (1986) FEMS Microbiology Ecology 38: 353

    Google Scholar 

  12. Costello DJ, Greenfield PF, Lee PL (1991a) Water Res 25: 847

    Google Scholar 

  13. Costello DJ, Greenfield PF, Lee PL (1991b) Water Res 25: 859

    Google Scholar 

  14. Dalla Torre A, Stephanopoulos G (1986) Biotechnol Bioeng 28: 1106

    Google Scholar 

  15. Denac M, Dunn IJ (1988a) Biotechnol Bioeng 32: 159

    Google Scholar 

  16. Denac M, Miguel A, Dunn IJ (1988b) Biotechnol Bioeng 31: 1841

    Google Scholar 

  17. Denac M, Lee PL, Newell RB, Greenfield PF (1990) Water Res 24: 583

    Google Scholar 

  18. Dochain D, Bastin G (1985) Environ Technol Lett 6: 584

    Google Scholar 

  19. Dochain D, Perrier M, Pauss A (1991) Ind Eng Chem Res 30: 129

    Google Scholar 

  20. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, p 417

    Google Scholar 

  21. Erickson LE (1988) Bioenergetics and yields for anaerobic digestion. In: Erickson LE and Fung DY-C (eds) Handbook on anaerobic fermentations. Dekker, New York, p 325

    Google Scholar 

  22. Erickson LE, Fung DY-C (1988) Handbook on anaerobic fermentations, Dekker, New York

    Google Scholar 

  23. Fan T, Erickson LE, Baltes JC, Shah PS (1973) J Water Pollut Control Fed 45: 591

    Google Scholar 

  24. Golden MP, Ydstie BE (1989) AIChE J 35: 1157

    Google Scholar 

  25. Gujer W, Zehnder AJB (1983) Water Sci Technol 15: 127

    Google Scholar 

  26. Harper SR, Pohland FG (1986) Biotechnol Bioeng 28: 585

    Google Scholar 

  27. Hickey RF, Switzenbaum MS (1991) J Water Pollut Control Fed 63: 129

    Google Scholar 

  28. Kaspar HF (1977) Untersuchung zur Kopplung von Wasserstoff-und Methanbildung im Faulschlamm. Diss ETH, Zürich

    Google Scholar 

  29. Kaspar HF, Wuhrmann K (1978) Appl Environ Microbiol 36: 1

    Google Scholar 

  30. Kissalita WS, Lo KV, Pinder KL (1989) Biotechnol Bioeng 33: 623

    Google Scholar 

  31. Lloyd D, Whitmore TN (1988) Lett Appl Microbiol 6: 179

    Google Scholar 

  32. Märkl H, Mather M, Witty W (1983) Mess-und Regeltechnik bei der anaeroben Abwasserreinigung sowie bei Biogasprozessen. In: Rehm H-J, Reed G (eds) Biotechnology Vol. 2, R. Oldenburg, München, p 369

    Google Scholar 

  33. Mather M (1986) Mathematische Modellierung der Methangärung. In: Fortschrittsberichte-VDI, Reihe 14: Landtechnik/Lebensmitteltechnik Vol. 28, VDI Verlag, Düsseldorf

    Google Scholar 

  34. McCarty PL (1981) One hundred years of anaerobic treatment. In: Hughes et al. (eds) Anaerobic digestion. Elsevier, Amsterdam, p 1

    Google Scholar 

  35. McCarty PL, Smith DP (1986) Environ Sci Technol 20: 1200

    Google Scholar 

  36. McCarty PL, Mosey FE (1991) Water Sci Technol 24: 17

    Google Scholar 

  37. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, p 373

    Google Scholar 

  38. Moletta R (1989) Environ Technol Lett 10: 173

    Google Scholar 

  39. Mosey FE (1983) Water Sci Technol 15: 209

    Google Scholar 

  40. Pauss A, Beauchemin C, Samson R, Guiot S (1990) Biotechnol Bioeng 35: 492

    Google Scholar 

  41. Pavlostathis SG, Giraldo-Gomez E (1991) Water Sci Technol 24: 1519

    Google Scholar 

  42. Petersen JN, Whyatt GA (1990) Biotechnol Bioeng 35: 114

    Google Scholar 

  43. Di Pinto AC, Limoni N, Passino R, Rozzi A, Tomei MC (1990) Anaerobic process control by automated bicarbonate monitoring. In: Briggs R (ed) Instrumentation, control and automation of water and wastewater treatment and transport systems. Pergamon, Oxford, p 51

    Google Scholar 

  44. Powell GE, Archer DB (1989) Biotechnol Bioeng 33: 570

    Google Scholar 

  45. Da Pra E (1987) Rechnerunterstützte Optimierung des Abbaus von Rübenschwemmwasser mittels eines Anaerobfilters Diss. Univ, Zürich

    Google Scholar 

  46. Renard P, Dochain D, Bastin G, Naveau H, Nyns EJ (1988) Biotechnol Bioeng 31: 287

    Google Scholar 

  47. Ripley LE, Boyle WC, Converse JC (1986) J Water Pollut Control Fed 58: 406

    Google Scholar 

  48. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  49. Rolf MJ, Lim HC (1984) Chem Eng Commun 29: 1236

    Google Scholar 

  50. Rozzi A, Eng M (1984) Trans Inst M C 6: 153

    Google Scholar 

  51. Rozzi A, Di Pinto AC, Brunetti A (1985) Environ Technol Lett 6: 594

    Google Scholar 

  52. Ryhiner G (1990) Regelung und adaptive On-Line Optimierung von ein-und zweistufigen anaeroben Fliessbett-Reaktoren. Diss ETH, Zürich

    Google Scholar 

  53. Ryhiner G, Dunn IJ, Heinzle E, Rohani S (1992) J Biotechnol 22: 89

    Google Scholar 

  54. Bélaich JP, Bruschi M, Garcia JL (1990) Microbiology and biochemistry of strict anaerobics involved in interspecies hydrogen transfer. FEMS Symp. No. 54. Plenum New York

    Google Scholar 

  55. Schürbüscher D, Wandrey Ch (1991) Anaerobic waste water process models. In: Rehm HJ, Reed G (eds) Biotechnology Vol. 4, VCH, Weinheim, p 441

    Google Scholar 

  56. Shi Z, Shimizu K, Watanabe N, Kobayashi T (1989) Biotechnol Bioeng 33: 999

    Google Scholar 

  57. Smith DP, McCarty PL (1990) J Water Pollut Control Fed 62: 175

    Google Scholar 

  58. Stephanopoulos G (1988) Modelling mixed culture interactions in anaerobic digestion. In: Erickson LE and Fung DY-C (eds) Handbook on anaerobic fermentations. Dekker, New York, p 597

    Google Scholar 

  59. Stouthamer AH (1988) Bioenergetics and yields with electron acceptors other than oxygen. In: Erickson LE and Fung DY-C (eds) Handbook on anaerobic fermentations. Dekker, New York, p 345

    Google Scholar 

  60. Switzenbaum MS, Giraldo-Gomez E, Hickey RF (1990) Enzyme Microb Technol 12: 722

    Google Scholar 

  61. Thauer, Jungermann, Decker (1977) Bacteriol Rev 41: 147

    Google Scholar 

  62. Tschui M (1989) Dynamisches Verhalten der mesophilen anaeroben Schlammstabilisierung. Dissertation. ETH, Zürich

    Google Scholar 

  63. Vogels GD, Keltjens JT, Van der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, p 707

    Google Scholar 

  64. Wandrey C, Aivasidis A, Bastin KH (1986) Ann NY Acad Sci 469: 421

    Google Scholar 

  65. Wang YT, Suidam MT, Rittman BE (1986) J Environm Eng 112: 975

    Google Scholar 

  66. Whitmore TN, Lloyd D (1986) Biotechnol Lett 8: 203

    Google Scholar 

  67. Whitmore TN, Lazzari M, Lloyd D (1985) Biotechnol Lett 7: 203

    Google Scholar 

  68. Whitmore TN, Jones G, Lazzari M, Lloyd D (1987) Methanogenesis in mesophilic and thermophilic anaerobic digesters: Monitoring and control based on dissolved hydrogen. In: Heinzle E, Reuss M (eds) Mass spectrometry in biotechnological process analysis and control. Plenum, New York, p 143

    Google Scholar 

  69. Wiesmann U (1988) Chem Ing Tech 60: 464

    Google Scholar 

  70. Zehnder AJB (1988) Biology of anaerobic microorganisms. Wiley, New York

    Google Scholar 

  71. Ricker NL, Slater WR, Merigh M (1988) Process monitoring and control strategies for anaerobic wastewater treatment. DECHEMA Biotechnol Conf Vol. 2, p 413

    Google Scholar 

  72. Costello DJ, Lee PL, Greenfield PF (1989) Bioprocess Eng 4: 119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Karl Schügerl on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Heinzle, E., Dunn, I.J., Ryhiner, G.B. (1993). Modeling and control for anaerobic wastewater treatment. In: Bioprocess Design and Control. Advances in Biochemical Engineering/Biotechnology, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0007197

Download citation

  • DOI: https://doi.org/10.1007/BFb0007197

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56315-0

  • Online ISBN: 978-3-540-47517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics