Skip to main content
Log in

The 55-kD Tumor Necrosis Factor Receptor and CD95 Independently Signal Murine Hepatocyte Apoptosis and Subsequent Liver Failure

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Activation of either the 55-kD tumor necrosis factor receptor (TNF-R1) or CD95 (Fas/Apo-1) causes apoptosis of cells and liver failure in mice, and has been associated with human liver disorders. The aim of this study was first to clarify the association between CD95 activation, hepatocyte apoptosis, and fulminant liver failure. Next, we investigated whether TNF-R1 and CD95 operate independently of each other in the induction of hepatocyte apoptosis.

Materials and Methods

Using both mice and primary liver cell cultures deficient in either TNF-R1 or functional CD95, the induction of apoptosis and hepatocyte death following activation of TNF-R1 or CD95 were studied in vitro and in various in vivo models of acute liver failure.

Results

In vivo or in vitro stimulation of CD95 caused apoptosis of wild-type (wt) murine hepatocytes which had not been sensitized by blocking transcription. Time course studies showed that DNA fragmentation and chromatin condensation preceded, respectively, membrane lysis in vitro and necrosis in vivo. Similar results were obtained after CD95 activation in hepatocytes or livers lacking TNF-R1. Conversely, hepatocytotoxicity due to endogenous or exogenous TNF was not affected in animals or liver cell cultures lacking the expression of functional CD95.

Conclusions

TNF-R1 and CD95 are independent and differentially regulated triggers of murine apoptotic liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yonehara S, Ishii A, Yonehara M. (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169: 1747–1756.

    Article  CAS  Google Scholar 

  2. Trauth BC, Clas C, Peters AMJ, et al. (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245: 301–305.

    Article  CAS  Google Scholar 

  3. Nagata S, Golstein P. (1995) The fas death factor. Science 267: 1449–1455.

    Article  CAS  Google Scholar 

  4. Cleveland JL, Ihle JN. (1995) Contenders in FasL/TNF death signaling. Cell 81: 479–482.

    Article  CAS  Google Scholar 

  5. Oehm A, Behrmann I, Falk W, et al. (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor family. J. Biol. Chem. 267: 10709–10715.

    CAS  PubMed  Google Scholar 

  6. Ni R, Tomita Y, Matsuda K, et al. (1994) Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp. Cell. Res. 215: 332–337.

    Article  CAS  Google Scholar 

  7. Tartaglia LA, Rothe M, Hu Y-F, Goeddel DV. (1993) Tumor necrosis factor’s cytotoxicity is signaled by the p55 TNF receptor. Cell 73: 213–216.

    Article  CAS  Google Scholar 

  8. Leist M, Gantner F, Jilg S, Wendel A. (1995) Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J. Immunol. 154: 1307–1316.

    CAS  PubMed  Google Scholar 

  9. Itoh N, Yonehara S, Ishii A, et al. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243.

    Article  CAS  Google Scholar 

  10. Suda T, Nagata N. (1994) Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 179: 873–879.

    Article  CAS  Google Scholar 

  11. Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D. (1992) Cytoplasmic truncation of the p55 tumor necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J. 11: 943–950.

    Article  CAS  Google Scholar 

  12. Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV. (1993) A novel domain within the 55 kd TNF recptor signals cell death. Cell 74: 845–853.

    Article  CAS  Google Scholar 

  13. Song HY, Dunbar JD, Donner DB. (1994) Aggregation of the intracellular domain of the type 1 tumor necrosis factor receptor defined by the two-hybrid system. J. Biol. Chem. 269: 22492–22495.

    CAS  PubMed  Google Scholar 

  14. Itoh N, Nagata S. (1993) A novel protein domain required for apoptosis. Mutational analysis of human fas antigen. J. Biol. Chem. 268: 10932–10937.

    CAS  PubMed  Google Scholar 

  15. Boldin MP, Mett IL, Varfolomeev EE, et al. (1995) Self-assiciation of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO-1 prompts signaling for TNF and Fas/APO-1 effects. J. Biol. Chem. 270: 387–391.

    Article  CAS  Google Scholar 

  16. Watanabe-Fukunaga R, Brannan Cl, Itoh N, et al. (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148: 1274–1279.

    CAS  PubMed  Google Scholar 

  17. Suda T, Takahashi T, Golstein P, Nagata S. (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178.

    Article  CAS  Google Scholar 

  18. Kriegler M, Perez C, DeFay K, Albert I, Lu SD. (1988) A novel Form of TNF/Cachectin is a cell surface sytotoxic transmembrane protein: Ramifications for the complex physiology of TNF. Cell 53: 45–53.

    Article  CAS  Google Scholar 

  19. Smith RA, Baglioni C. (1987) The active form of tumor necrosis factor is a trimer. J. Biol. Chem. 262: 6951–6954.

    CAS  PubMed  Google Scholar 

  20. Tanaka M, Suda T, Takahashi T, Nagata S. (1995) Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 14: 1129–1135.

    Article  CAS  Google Scholar 

  21. Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G, Wendel A. (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-α requires transcriptional arrest. J. Immunol. 153: 1778–1787.

    CAS  PubMed  Google Scholar 

  22. Ogasawara J, Watanabe-Fukunaga R, Adashi M, et al. (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–808.

    Article  CAS  Google Scholar 

  23. Tewari M, Dixit VM. (1995) Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270: 3255–3260.

    Article  CAS  Google Scholar 

  24. Morimoto H, Yonehara S, Bonavida B. (1993) Overcoming tumor necrosis factor and drug resistance of human tumor cell lines by combination treatment with anti-Fas antibody and drugs or toxins. Cancer Res. 53: 2591–2596.

    CAS  PubMed  Google Scholar 

  25. Hashimoto S, Ishii A, Yonehara S. (1991) The Elb oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int. Immunol. 3: 343–351.

    Article  CAS  Google Scholar 

  26. Kobayashi N, Hamamoto Y, Yamamoto N, Ishii A, Yonehara M, Yonehara S. (1990) Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication. Proc. Natl. Acad. Sci. U.S.A. 87: 9620–9624.

    Article  CAS  Google Scholar 

  27. Owen-Schaub LB, Meterissian S, Ford RJ. (1993) Fas/APO-1 expression and function on malignant cells of hematologic and nonhematologic origin. J. Immunother. 14: 234–241.

    Article  CAS  Google Scholar 

  28. Itoh N, Tsujimoto Y, Nagata S. (1993) Effect of bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151: 621–627.

    CAS  PubMed  Google Scholar 

  29. Clement M-V, Stamenkovitch I. (1994) Fas and tumor necrosis factor receptor-mediated cell death: Similarities and distinctions. J. Exp. Med. 180: 557–567.

    Article  CAS  Google Scholar 

  30. Wong GHW, Goeddel DV. (1994) Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J. Immunol. 152: 1751–1755.

    CAS  PubMed  Google Scholar 

  31. Grell M, Krammer PH, Scheurich P. (1994) Segregation of APO-1/Fas antigen- and tumor necrosis factor receptor-mediated apoptosis. Eur. J. Immunol. 24: 2563–2566.

    Article  CAS  Google Scholar 

  32. Schulze-Osthoff K, Krammer PH, Dröge W. (1994) Divergent signalling via APO-1/fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 13: 4587–4596.

    Article  CAS  Google Scholar 

  33. Lehmann V, Freudenberg MA, Galanos C. (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J. Exp. Med. 163: 657–663.

    Article  Google Scholar 

  34. Tiegs G, Wolter M, Wendel A. (1989) Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin hepatitis in mice. Biochem. Pharmacol. 38: 627–631.

    Article  CAS  Google Scholar 

  35. Mizuhara H, O’Neill E, Seki N, et al. (1994) T cell activation-associated hepatic injury: Mediation by tumor necrosis factors and protection by interleukin 6. J. Exp. Med. 179: 1529–1537.

    Article  CAS  Google Scholar 

  36. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. (1995) Concanavalin A-induced T-cell-mediated hepatic injury in mice: The role of tumor necrosis factor. Hepatology 21: 190–198.

    CAS  PubMed  Google Scholar 

  37. Chatenoud L, Ferran C, Bach JF. (1991) The anti-cd3-induced syndrome: A consequence of massive in vivo cell activation. Curr. Top. Microbiol. Immunol. 174: 121–132.

    CAS  PubMed  Google Scholar 

  38. Miethke T, Wahl C, Heeg K, Echtenacher B, Krammer PH, Wagner H. (1992) T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: Critical role of tumor necrosis factor. J. Exp. Med. 175: 91–98.

    Article  CAS  Google Scholar 

  39. Miethke T, Duschek K, Wahl C, Heeg K, Wagner H. (1993) Pathogenesis of the toxic shock syndrome: T cell mediated lethal shock caused by the superantigen TSST-1. Eur. J. Immunol. 23: 1494–1500.

    Article  CAS  Google Scholar 

  40. Nagaki M, Muto Y, Ohnishi H, et al. (1994) Hepatic injury and lethal shock in galactosamine-sensitized mice induced by the superantigen staphylococcal enterotoxin B. Gastroenterology 106: 450–458.

    Article  CAS  Google Scholar 

  41. Leist M, Gantner F, Bohlinger L Tiegs G, Germann PG, Wendel A. (1995) Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am. J. Pathol. 146: 1220–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gantner F, Leist M, Jilg S, German PG, Freudenberg MA, Tiegs G. (1995) Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gastroenterology 109: 166–176.

    Article  CAS  Google Scholar 

  43. Hiramatsu N, Hayashi N, Katayama K, et al. (1994) Immunohistochemical detection of fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19: 1354–1359.

    Article  CAS  Google Scholar 

  44. Galle PR, Hofmann WJ, Otto G, Stremmel W, Runkel L. (1995) Involvement of the APO-1/fas receptor and ligand in liver damage. Gastroenterology 108: A1068.

    Google Scholar 

  45. Rothe J, Lesslauer W, Lötscher H, et al. (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by listeria monocytogenes. Nature 364: 798–800.

    Article  CAS  Google Scholar 

  46. Espevik T, Nissen-Meyer J. (1986) A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor tumor necrosis factor from human monocytes. J. Immunol. Methods 95: 99–105.

    Article  CAS  Google Scholar 

  47. Seglen PO. (1973) Preparation of rat liver cells: Enzymatic requirements for tissue dispersion. Exp. Cell. Res. 82: 391–398.

    Article  CAS  Google Scholar 

  48. Bergmeyer HU. (1984) Methods of Enzymatic Analysis. 3rd Ed. Verlag Chemie, Weinheim, Vol. 82.

    Google Scholar 

  49. Mosmann T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 6: 55–63.

    Article  Google Scholar 

  50. Wyllie AH. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556.

    Article  CAS  Google Scholar 

  51. Mariani SM, Matiba B, Armandola EA, Krammer PH. (1994) The APO-1/Fas (CD95) receptor is expressed in homozygous MRL/lpr mice. Eur. J. Immunol. 24: 3119–3123.

    Article  CAS  Google Scholar 

  52. Pfeffer K, Matsuyama T, Kündig TM, et al. (1993) Mice deficient for the 55kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to I. monocytogenes infection. Cell 73: 457–467.

    Article  CAS  Google Scholar 

  53. Beutler B, Grau GE. (1993) Tumor necrosis factor in the pathogenesis of infectious diseases. Crit. Care Med. 21: S423–S435.

    Article  CAS  Google Scholar 

  54. Cerami A, Beutler B. (1988) The role of cachectin/TNF in endotoxic shock and cachexia. Immunol. Today 9: 28–30.

    Article  CAS  Google Scholar 

  55. Westendorp MO, Frank R, Ochsenbauer C, et al. (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 tat and gp120. Nature 375: 497–500.

    Article  CAS  Google Scholar 

  56. Rouvier E, Luciani MF, Golstein P. (1993) Fas involvement in Ca2+ independent T cell-mediated cytotoxicity. J. Exp. Med. 177: 195–200.

    Article  CAS  Google Scholar 

  57. Oberhammer F, Bursch W, Parzefall W, et al. (1991) Effect of transforming growth factor β on cell death of cultured rat hepatocytes. Cancer Res. 51: 2478–2485.

    CAS  PubMed  Google Scholar 

  58. Schwall RH, Robbins K, Jardieu P, Chang L, Lai C, Terrell TG. (1993) Activin induces cell death in hepatocytes in vivo and in vitro. Hepatology 18: 347–356.

    CAS  PubMed  Google Scholar 

  59. Nolan JP. (1989) Intestinal endotoxins as mediators of hepatic injury—An idea whose time has come again. Hepatology 10: 887–891.

    Article  CAS  Google Scholar 

  60. Laskin DL. (1990) Nonparenchymal cells and hepatotoxicity. Semin. Liver Dis. 10: 293–304.

    Article  CAS  Google Scholar 

  61. Steininger R, Roth E, Függer R, et al. (1994) Transhepatic metabolism of TNF-alpha, IL-6, and endotoxin in the early hepatic reperfusion period after human liver transplantation. Transplantation 58: 179–182.

    Article  CAS  Google Scholar 

  62. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG. (1994) Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20: 453–460.

    Article  CAS  Google Scholar 

  63. Gilles PN, Guerrette DL, Ulevitch RJ, Schreiber RD, Chisari FV. (1992) HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferon-gamma. Hepatology 16: 655–663.

    Article  CAS  Google Scholar 

  64. Laskin DL, Gardner CR, Price VF, Jollow DJ. (1995) Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21: 1045–1050.

    Article  CAS  Google Scholar 

  65. Barriault C, Audet M, Yousef IM, Tuchweber B. (1995) Effect of agents which modify reticuloendothelial function on acute phalloidin-induced lethality and hepatotoxicity in mice. Toxicol. Appl. Pharmacol. 131: 206–215.

    Article  CAS  Google Scholar 

  66. Czaja MJ, Xu J, Ju Y, Alt E, Schmiedeberg P. (1994) Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology 19: 1282–1289.

    Article  CAS  Google Scholar 

  67. Ishiyama H, Ogino K, Hobara T. (1995) Role of Kupffer cells in rat liver injury induced by diethyidithiocarbamate. Eur. J. Pharmacol. 292: 135–141.

    CAS  PubMed  Google Scholar 

  68. Edwards MJ, Keller BJ, Kauffman, Thurman RG. (1993) The involvement of Kupffer cells in carbon tetrachloride toxicity. Toxicol. Appl. Pharmacol. 119: 275–279.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of S. Otte and M. Ullmann is gratefully acknowledged. We are indebted to Dr. P.-L. Nicotera (Konstanz) for stimulating discussion. This work was supported by the Deutsche Forschungsgemeinschaft grants We686-15 and Til69/3.

Author information

Authors and Affiliations

Authors

Additional information

Contributed by E. Beutler on October 25, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leist, M., Gantner, F., Künstle, G. et al. The 55-kD Tumor Necrosis Factor Receptor and CD95 Independently Signal Murine Hepatocyte Apoptosis and Subsequent Liver Failure. Mol Med 2, 109–124 (1996). https://doi.org/10.1007/BF03402207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402207

Navigation