Skip to main content
Log in

Part II: Beneficial Effects of the Peroxynitrite Decomposition Catalyst FP15 in Murine Models of Arthritis and Colitis

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Peroxynitrite is a reactive oxidant species produced from nitric oxide and superoxide, which has been indirectly implicated in the pathogenesis of many inflammatory conditions including arthritis and colitis. Here, using a novel peroxynitrite decomposition catalyst, FP15, we directly investigate the role of peroxynitrite in the pathogenesis of arthritis and colitis in rodent models.

Methods

Arthritis was induced in mice by intradermal collagen injection; incidence and severity of arthritis was monitored using a macroscopic scoring system. At the end of the experiment paws were taken for determination of neutrophil infiltration (myeloperoxidase [MPO] activity), oxidative stress (malondialdehyde [MDA] level), and cytokine/chemokine levels. Colitis was induced in mice by 5% dextran sodium sulfate (DSS) in their drinking water. Colitis symptoms were assessed 10 days later, the parameters determined included body weight, rectal bleeding, colon length, colonic MPO and MDA levels, and colon histologic damage.

Results

Treatment with FP15 significantly reduced the inflammation and oxidative stress in arthritis and colitis. FP15 reduced both the incidence and severity of arthritis in mice and this was associated with reduced paw MPO and MDA levels. Similarly, in colitis, FP15 reduced colon damage, and this was associated with reduced colon neutrophil infiltration and oxidative stress.

Conclusions

The protective effect of FP15 suggests that peroxynitrite plays a significant pathogenetic role in arthritis and colitis in the currently employed rodent models. Further work is needed to determine whether neutralization of peroxynitrite also represents a promising strategy to treat human inflammatory diseases such as arthritis and colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singer II, Kawka DW, Scott S, et al. (1996) Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111: 871–885.

    Article  CAS  Google Scholar 

  2. Zingarelli B, Cuzzocrea S, Szabo C, Salzman AL. (1998) Mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, reduces trinitrobenzene sulfonic acid-induced colonic damage in rats. J. Pharmacol. Exp. Ther. 287: 1048–1055.

    CAS  PubMed  Google Scholar 

  3. Cuzzocrea S, Mazzon E, Dugo L, Caputi AP, Riley DP, Salvemini D. (2001) Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis. Eur. J. Pharmacol. 432: 79–89.

    Article  CAS  Google Scholar 

  4. Goggins MG, Shah SA, Goh J, et al. (2001) Increased urinary nitrite, a marker of nitric oxide, in active inflammatory bowel disease. Mediators Inflamm. 10: 69–73.

    Article  CAS  Google Scholar 

  5. Perner A, Nordgaard I, Matzen P, Rask-Madsen J. (2002) Colonic production of nitric oxide gas in ulcerative colitis, collagenous colitis and uninflamed bowel. Scand. J. Gastroenterol. 37: 183–188.

    Article  CAS  Google Scholar 

  6. Evans CH, Stefanovic-Racic M, Lancaster J. (1995) Nitric oxide and its role in orthopaedic disease Clin. Orthop. 312: 275–294.

    Google Scholar 

  7. Santos LL, Morand EF, Yang Y, Hutchinson P, Holdsworth SR. (1997) Suppression of adjuvant arthritis and synovial macrophage inducible nitric oxide by N-iminoethyl-L-ornithine, a nitric oxide synthase inhibitor. Inflammation 21: 299–311.

    Article  CAS  Google Scholar 

  8. Brahn E, Banquerigo ML, Firestein GS, Boyle DL, Salzman AL, Szabo C. (1998) Collagen induced arthritis: reversal by mercaptoethylguanidine, a novel antiinflammatory agent with a combined mechanism of action. J. Rheumatol. 25: 1785–1793.

    CAS  PubMed  Google Scholar 

  9. Salvemini D, Mazzon E, Dugo L, et al. (2001) Amelioration of joint disease in a rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetic. Arthritis Rheum. 44: 2909–2921.

    Article  CAS  Google Scholar 

  10. Attur MG, Patel RN, Abramson SB, Amin AR. (1997) Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum. 40: 1050–1053.

    Article  CAS  Google Scholar 

  11. Stichtenoth DO, Fauler J, Zeidler H, Frolich JC. (1995) Urinary nitrate excretion is increased in patients with rheumatoid arthritis and reduced by prednisolone. Ann. Rheum. Dis. 54: 820–824.

    Article  CAS  Google Scholar 

  12. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834–842.

    Article  CAS  Google Scholar 

  13. Hausladen A, Fridovich I. (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269: 29405–29408.

    CAS  PubMed  Google Scholar 

  14. Szabo C, Day BJ, Salzman AL. (1996) Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381: 82–86.

    Article  CAS  Google Scholar 

  15. Szabo C, Zingarelli B, O’Connor M, Salzman AL. (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl. Acad. Sci. U.S.A. 93: 1753–1758.

    Article  CAS  Google Scholar 

  16. Greenacre SA, Ischiropoulos H. (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic. Res. 34: 541–581.

    Article  CAS  Google Scholar 

  17. Zingarelli B, Szabo C, Salzman AL. (1999) Blockade of Poly(ADP-ribose) synthetase inhibits neutrophil recruitment, oxidant generation, and mucosal injury in murine colitis. Gastroenterology 116: 335–345.

    Article  CAS  Google Scholar 

  18. Szabo C, Scott GS, Virag L, et al. (1998) Suppression of macrophage inflammatory protein (MIP)-1alpha production and collagen-induced arthritis by adenosine receptor agonists. Br. J. Pharmacol. 125: 379–387.

    Article  CAS  Google Scholar 

  19. Szabo C, Virag L, Cuzzocrea S, et al. (1998) Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc. Natl. Acad. Sci. U.S.A. 95: 3867–3872.

    Article  CAS  Google Scholar 

  20. Rachmilewitz D, Stamler JS, Karmeli F, et al. (1993) Peroxynitrite-induced rat colitis—a new model of colonic inflammation. Gastroenterology 105: 1681–1688.

    Article  CAS  Google Scholar 

  21. Szabó C, Mabley JG, Moeller SM, et al. (2002) Pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol. Med. 8(10): 571–580.

    PubMed  PubMed Central  Google Scholar 

  22. Liaudet L, Mabley JG, Pacher P, et al. (2002) Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury. Ann. Surg. 235: 568–578.

    Article  Google Scholar 

  23. Bradford MM. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  24. Mabley JG, Pacher P, Southan GJ, Salzman AL, Szabo C. (2002) Nicotine reduces the incidence of type I diabetes in mice. J. Pharmacol. Exp. Ther. 300: 876–881.

    Article  CAS  Google Scholar 

  25. Bianchi C, Wakiyama H, Faro R, et al. (2002) A novel peroxynitrite decomposition catalyst (FP-15) reduces heart infarct size in a model of acute ischemia-reperfusion. Ann. Thorac. Surg. (in press).

  26. Pacher P, Liaudet L, Bai P, Virág L, Mabley JG, Szabó C. (2002) A potent peroxynitrite decomposition catalyst, FP15, protects against the development of doxorubicin-induced heart failure. FASEB J. 16: A177 (abstract).

    Article  Google Scholar 

  27. Naidu BV, Krishnadasan B, Fraga C, et al. (2002) The critical role of reactive nitrogen species in lung ischemia reperfusion injury. J. Heart Lung Transplant. 21: 135 (abstract).

    Article  Google Scholar 

  28. Kaur H, Halliwell B. (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 350: 9–12.

    Article  CAS  Google Scholar 

  29. Mapp PI, Klocke R, Walsh DA, et al. (2001) Localization of 3-nitrotyrosine to rheumatoid and normal synovium. Arthritis Rheum. 44: 1534–1539.

    Article  CAS  Google Scholar 

  30. Brennan ML, Wu W, Fu X, et al. (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 277: 17415–17427.

    Article  CAS  Google Scholar 

  31. Salvemini D, Wang ZQ, Bourdon DM, Stern MK, Currie MG, Manning PT. (1996) Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur. J. Pharmacol. 303: 217–220.

    Article  CAS  Google Scholar 

  32. Pelletier JP, Lascau-Coman V, Jovanovic D, et al. (1999) Selective inhibition of inducible nitric oxide synthase in experimental osteoarthritis is associated with reduction in tissue levels of catabolic factors. J. Rheumatol. 26: 2002–2014.

    CAS  PubMed  Google Scholar 

  33. Keng T, Privalle CT, Gilkeson GS, Weinberg JB. (2000) Peroxynitrite formation and decreased catalase activity in autoimmune MRL-lpr/lpr mice. Mol. Med. 6: 779–792.

    Article  CAS  Google Scholar 

  34. Del Carlo M Jr, Loeser RF. (2002) Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum. 46: 394–403.

    Article  Google Scholar 

  35. Salvemini D, Wang ZQ, Stern MK, Currie MG, Misko TP. (1998) Peroxynitrite decomposition catalysts: therapeutics for peroxynitrite-mediated pathology. Proc. Natl. Acad. Sci. U.S.A. 95: 2659–2663.

    Article  CAS  Google Scholar 

  36. Carlson RP, Hartman DA, Tomchek LA, et al. (1993) Rapamycin, a potential disease-modifying antiarthritic drug. J. Pharmacol. Exp. Ther. 266: 1125–1138.

    CAS  PubMed  Google Scholar 

  37. Williams PJ, Jones RH, Rademacher TW. (1997) Reduction in the incidence and severity of collagen-induced arthritis in DBA/1 mice, using exogenous dehydroepiandrosterone. Arthritis Rheum. 40: 907–911.

    Article  CAS  Google Scholar 

  38. Quattrocchi E, Dallman MJ, Dhillon AP, Quaglia A, Bagnato G, Feldmann M. (2001) Murine IL-10 gene transfer inhibits established collagen-induced arthritis and reduces adenovirus-mediated inflammatory responses in mouse liver. J. Immunol. 166: 5970–5978.

    Article  CAS  Google Scholar 

  39. Kim SH, Kim S, Evans CH, Ghivizzani SC, Oligino T, Robbins PD. (2001) Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J. Immunol. 166: 3499–3505.

    Article  CAS  Google Scholar 

  40. Sone H, Kawakami Y, Sakauchi M, et al. (2001) Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem. Biophys. Res. Commun. 281: 562–568.

    Article  CAS  Google Scholar 

  41. Gertzberg N, Clements R, Jaspers I, et al. (2000) Tumor necrosis factor-alpha-induced activating protein-1 activity is modulated by nitric oxide-mediated protein kinase G activation. Am. J. Respir. Cell. Mol. Biol. 22: 105–115.

    Article  CAS  Google Scholar 

  42. Cooke CL, Davidge ST. (2002) Peroxynitrite increases iNOS through NF-kappaB and decreases prostacyclin synthase in endothelial cells. Am. J. Physiol. 282: C395–C402.

    Article  CAS  Google Scholar 

  43. Zouki C, Jozsef L, Ouellet S, Paquette Y, Filep JG. (2001) Peroxynitrite mediates cytokine-induced IL-8 gene expression and production by human leukocytes. J. Leukoc. Biol. 69: 815–824.

    CAS  PubMed  Google Scholar 

  44. Matata BM, Galinanes M. (2002) Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J. Biol. Chem. 277: 2330–2335.

    Article  CAS  Google Scholar 

  45. Singer II, Kawka DW, Scott S, et al. (1996) Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology 111: 871–885.

    Article  CAS  Google Scholar 

  46. Miampamba M, Sharkey KA. (1999) Temporal distribution of neuronal and inducible nitric oxide synthase and nitrotyrosine during colitis in rats. Neurogastroenterol. Motil. 11: 193–206.

    Article  CAS  Google Scholar 

  47. Dijkstra G, Moshage H, van Dullemen HM, et al. (1998) Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J. Pathol. 186: 416–421.

    Article  CAS  Google Scholar 

  48. Virág L, Szabó C. (2002) The therapeutic potential of PARP inhibition. Pharmacol. Rev. 54: 375–429.

    Article  Google Scholar 

  49. Mabley JG, Jagtap P, Perretti M, et al. (2001) Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflamm. Res. 50: 561–569.

    Article  CAS  Google Scholar 

  50. Radi R, Cassina A, Hodara R. (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol. Chem. 383: 401–409.

    Article  CAS  Google Scholar 

  51. Szabo C, Ohshima H. (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1: 373–385.

    Article  CAS  Google Scholar 

  52. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 276: 29596–29602.

    Article  CAS  Google Scholar 

  53. Wang W, Sawicki G, Schulz R. (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc. Res. 53: 165–174.

    Article  CAS  Google Scholar 

  54. Macmillan-Crow LA, Cruthirds DL. (2001) Manganese superoxide dismutase in disease. Free Radic. Res. 34: 325–336.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institutes of Health (R44DK53675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Szabó.

Additional information

Contributed by C. Szabó

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabley, J.G., Liaudet, L., Pacher, P. et al. Part II: Beneficial Effects of the Peroxynitrite Decomposition Catalyst FP15 in Murine Models of Arthritis and Colitis. Mol Med 8, 581–590 (2002). https://doi.org/10.1007/BF03402168

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402168

Keywords

Navigation